首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Seasonal elemental carbon (EC) and organic carbon (OC) concentration levels in PM2.5 samples collected in Milan (Italy) are presented and discussed, enriching the world-wide database of carbonaceous species in fine particulate matter (PM). High-volume PM2.5 sampling campaigns were performed from August 2002 through December 2003 in downtown Milan at an urban background site. Compared to worldwide average concentrations, in Milan warm-season OC and both warm- and cold-season EC are relatively low; conversely, cold-season OC concentrations are rather high. Consequently, high values for the OC/EC ratio are observed, especially in the winter period. The relation between OC/EC ratio values and wind direction is investigated, pointing out that the highest ratios are associated to winds blowing from those nearby areas where wood consumption for domestic heating is larger. Information on the OC partitioning between its primary and secondary fraction are derived by means of the EC-tracer method and principal component analysis. In the warm-season, OC is mainly of secondary origin, secondary organic aerosol (SOA) accounting for about 84% of the particulate organic matter and 25–28% of the PM2.5 mass. For the cold season the full application of the EC-tracer method was not possible and the primary organic aerosol deriving from traffic could only be estimated. However, principal component analysis (PCA) suggest a prevailing primary origin for OC, thus raising the attention on space heating emissions, and on wood combustion in particular, for air quality control. The role of traffic emissions on PM2.5 concentration levels, as a primary source, are also assessed: EC and primary organic matter from traffic account for a warm-season 30% and a cold-season 7% of the total carbon in PM2.5, that is for about 10% and 6% of PM2.5 mass, respectively. This latter small primary contribution estimated for the cold-season points out that stationary sources, which were not thought to play a significant role on PM concentration levels, may conversely be as much responsible for ambient particulate pollution.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and cloud/fog water samples were collected at Mount Taishan in an autumn–winter period, and were analyzed by GS-MS. Higher molecular weight PAHs (4–6 rings) predominated in PM2.5 samples, whereas lighter PAH compounds contributed 61.71% of the total PAH concentration in cloud/fog samples. Particles tended to contain more PAHs and have a more intensive influence on the atmospheric environment on colder days. During cloud/fog events, the scavenging ratio based on PAHs associated with particles was estimated to be about 13.45%. PAHs in PM2.5 samples had a significant positive relationship with CO and SO2, suggesting that PAHs, SO2, and CO may originated from the same sources, such as residential coal combustion activities. Diagnostic ratio analysis and factor analysis indicated that the sources of PAHs were mainly from coal combustion during this period.  相似文献   

3.
Improved understanding of the sources of air pollution that are most harmful could aid in developing more effective measures for protecting human health. The Denver Aerosol Sources and Health (DASH) study was designed to identify the sources of ambient fine particulate matter (PM(2.5)) that are most responsible for the adverse health effects of short-term exposure to PM (2.5). Daily 24-hour PM(2.5) sampling began in July 2002 at a residential monitoring site in Denver, Colorado, using both Teflon and quartz filter samplers. Sampling is planned to continue through 2008. Chemical speciation is being carried out for mass, inorganic ionic compounds (sulfate, nitrate and ammonium), and carbonaceous components, including elemental carbon, organic carbon, temperature-resolved organic carbon fractions and a large array of organic compounds. In addition, water soluble metals were measured daily for 12 months in 2003. A receptor-based source apportionment approach utilizing positive matrix factorization (PMF) will be used to identify PM (2.5) source contributions for each 24-hour period. Based on a preliminary assessment using synthetic data, the proposed source apportionment should be able to identify many important sources on a daily basis, including secondary ammonium nitrate and ammonium sulfate, diesel vehicle exhaust, road dust, wood combustion and vegetative debris. Meat cooking, gasoline vehicle exhaust and natural gas combustion were more challenging for PMF to accurately identify due to high detection limits for certain organic molecular marker compounds. Measurements of these compounds are being improved and supplemented with additional organic molecular marker compounds. The health study will investigate associations between daily source contributions and an array of health endpoints, including daily mortality and hospitalizations and measures of asthma control in asthmatic children. Findings from the DASH study, in addition to being of interest to policymakers, by identifying harmful PM(2.5) sources may provide insights into mechanisms of PM effect.  相似文献   

4.
Water, suspended particulate matter (SPM), and sediment samples were collected from ten rivers in Tianjin and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), dissolved organic carbon (DOC), particulate organic carbon (POC) in SPM and total organic carbon (TOC) in sediment. The behavior and fate of PAHs influenced by these parameters were examined. Generally, organic carbon was the primary factor controlling the behavior of the 16 PAH species. Partitioning of PAHs between SPM and water phase was studied, and K(OC) for some PAH species were found to be significantly higher than the predicted values. The source of PAHs contamination was diagnosed by using PAH isomer ratios. Coal combustion was identified to be a long-term and prevailing contamination source for sediment, while sewage/wastewater source could reasonably explain a short-term PAHs contamination of SPM.  相似文献   

5.
The primary emission source contributions to fine organic carbon (OC) and fine particulate matter (PM2.5) mass concentrations on a daily basis in Atlanta, GA, are quantified for a summer (July 3 to August 4, 2001) and a winter (January 2-31, 2002) month. Thirty-one organic compounds in PM2.5 were identified and quantified by gas chromatography/mass spectrometry. These organic tracers, along with elemental carbon, aluminum, and silicon, were used in a chemical mass balance (CMB) receptor model. CMB source apportionment results revealed that major contributors to identified fine OC concentrations include meat cooking (7-68%; average: 36%), gasoline exhaust (7-45%; average: 21%), and diesel exhaust (6-41%; average: 20%) for the summer month, and wood combustion (0-77%; average: 50%); gasoline exhaust (14-69%; average: 33%), meat cooking (1-14%; average: 5%), and diesel exhaust (0-13%; average: 4%) for the winter month. Primary sources, as well as secondary ions, including sulfate, nitrate, and ammonium, accounted for 86 +/- 13% and 112 +/- 15% of the measured PM2.5 mass in summer and winter, respectively.  相似文献   

6.
Aerosol size distributions are presented for a winter intensive study at the Fresno Supersite. The size distributions were consistent with and predictive for continuous PM2.5 measured by beta attenuation. They varied temporally with respect to source type and intensity, with the smallest mean diameters associated with high NOx concentrations during weekday morning rush hours. Conversely, small and large particle and black carbon (BC) concentrations were higher during Sunday and weekday evenings in response to traffic and residential wood combustion emissions. Ambient PM2.5 light scattering (Bsp) was precisely but systematically underestimated during winter, probably because of heating in the sample shelter.  相似文献   

7.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

8.
In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003-2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute approximately 65-80% to measured OC, with wood smoke, on average, accounting for approximately 41% of OC and approximately 18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

9.
The objective of this study was to investigate the organic composition of wood smoke emissions and ambient air samples in order to determine the wood smoke contribution to the ambient air pollution in the residential areas. From November 2005 to March 2006 particle-phase PM10 samples were collected in the residential town Dettenhausen surrounded by forests near Stuttgart in southern Germany. Samples collected on pre-baked glass fibre filters were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). 21 polycyclic aromatic hydrocarbons (PAH) including 16 USEPA priority pollutants, different organic wood smoke tracers, primarily 21 species of syringol and guaiacol derivatives, levoglucosan and its isomers mannosan, galactosan and dehydroabietic acid were detected and quantified in this study. The concentrations of these compounds were compared with the fingerprints of emissions from hardwood and softwood combustion carried out in test facilities at Universitaet Stuttgart and field investigations at a wood stove during real operation in Dettenhausen. It was observed that the combustion derived PAH was detected in higher concentrations than other PAH in the ambient air PM10 samples. Syringol and its derivatives were found in large amounts in hardwood burning but were not detected in softwood burning emissions. On the other hand, guaiacol and its derivatives were found in both softwood and hardwood burning emissions, but the concentrations were higher in the softwood smoke compared to hardwood smoke. So, these compounds can be used as typical tracer compounds for the different types of wood burning emissions. In ambient air samples both syringol and guaiacol derivatives were found which indicates the wood combustion contribution to the PM load in such residential areas. Levoglucosan was detected in high concentrations in all ambient PM10 samples. A source apportionment modelling, Positive Matrix Factorization (PMF) was implemented to quantify the wood smoke contribution to the ambient PM10 bound organic compounds in the residential area.  相似文献   

10.
Exposure to air pollutants has been associated with adverse health effects. However, analyses of the effects of season and ambient parameters such as ozone have not been fully conducted. Residential indoor and outdoor air levels of polycyclic aromatic hydrocarbons (PAH), black carbon (measured as absorption coefficient [Abs]), and fine particulate matter <2.5 μm (PM)(2.5) were measured over two-weeks in a cohort of 5-6 year old children (n=334) living in New York City's Northern Manhattan and the Bronx between October 2005 and April 2010. The objectives were to: 1) characterize seasonal changes in indoor and outdoor levels and indoor/outdoor (I/O) ratios of PAH (gas + particulate phase; dichotomized into Σ(8)PAH(semivolatile) (MW 178-206), and Σ(8)PAH(nonvolatile) (MW 228-278)), Abs, and PM(2.5); and 2) assess the relationship between PAH and ozone. Results showed that heating compared to nonheating season was associated with greater Σ(8)PAH(nonvolatile) (p<0.001) and Abs (p<0.05), and lower levels of Σ(8)PAH(semivolatile) (p<0.001). In addition, the heating season was associated with lower I/O ratios of Σ(8)PAH(nonvolatile) and higher I/O ratios of Σ(8)PAH(semivolatile) (p<0.001) compared to the nonheating season. In outdoor air, Σ(8)PAH(nonvolatile) was correlated negatively with community-wide ozone concentration (p<0.001). Seasonal changes in emission sources, air exchanges, meteorological conditions and photochemical/chemical degradation reactions are discussed in relationship to the observed seasonal trends.  相似文献   

11.
Ambient PM2.5 (particulate matter less than 2.5 microm in aerodynamic diameter) in the northwestern United States and Alaska is dominated by carbonaceous compounds associated with wood burning and transportation sources. PM2.5 source characterization studies analyzing recent PM2.5 speciation data have not been previously reported for these areas. In this study, ambient PM2.5 speciation samples collected at two monitoring sites located in the northwestern area, Olympic Peninsula, WA, and Portland, OR, and one monitoring site located in Anchorage, AK, were characterized through source apportionments. Gasoline vehicle, secondary sulfate, and wood smoke were the largest sources of PM2.5 collected at the Anchorage, Olympic, and Portland monitoring sites, respectively. Secondary sulfates showed an April peak at Anchorage and a November peak at Portland that are likely related to the increased photochemical reaction and long-range transport in Anchorage and meteorological stagnation in Portland. Secondary nitrate at the Olympic site showed a weak summer high peak that could be caused by seasonal tourism in the national park. Backward trajectories suggested that the elevated aged sea salt concentrations at the Portland monitoring site could be regional transport of sea salt that passed through other contaminated air sheds along the coast. Oil combustion emissions that might originate from ships and ferries were observed at the Olympic monitoring site.  相似文献   

12.
Levels of the monosaccharide anhydride (MA) levoglucosan and its isomeric compounds galactosan and mannosan were quantified in the PM10 fraction (particulate matter < or = 10 microm in aerodynamic diameter) of ambient aerosols from an urban (Oslo) and a suburban (Elverum) site in Norway, both influenced by small-scale wood burning. MAs are degradation products of cellulose and hemicellulose, and levoglucosan is especially emitted in high concentrations during pyrolysis and combustion of wood, making it a potential tracer of primary particles emitted from biomass burning. MAs were quantified using a novel high-performance liquid chromatography/ high-resolution mass spectrometry-time of flight method. This approach distinguishes between the isomeric compounds of MAs and benefits from the limited sample preparation required before analysis, and no extensive derivatization step is needed. The highest concentrations of levogucosan, galactosan, and mannosan (sigmaMA) were recorded in winter because of wood burning for residential heating (sigmaMA(MAX) = 1,240 ng m(-3)). This finding was substantiated by a relatively high correlation (R2 = 0.64) between the levoglucosan concentration and decreasing ambient temperature. At the suburban site, sigmaMA accounted for 3.1% of PM10, whereas the corresponding level at the urban site was 0.6%. The mass size distribution of MAs associated with atmospheric aerosols was measured using a Berner cascade impactor. The size distribution was characterized with a single mode at 561 nm. Ninety-five percent of the mass concentration of the MAs was found to be associated with particles < 2 micro.m. A preliminary attempt to estimate the contribution of wood burning to the mass concentration of PM10 in Oslo using levoglucosan as a tracer indicates that 24% comes from wood burning. This is approximately a factor of 2 lower than estimated by the AirQUIS dispersion model.  相似文献   

13.
Wood is commonly used in residential combustion for heating purposes; however, it can be a major source of air pollutants, namely fine particles, volatile organic compounds and carbon monoxide. Since 2004, the PM10 daily limit value has been surpassed in Portugal, and the European Commission has stated that plans and programs must be designed in order to reduce these levels. In Portugal, 18% of PM10 emissions are due to residential wood combustion, which may deeply impact the PM10 levels in the atmosphere. The main aim of this study is to investigate the impact of residential wood combustion on the air quality in Portugal. The air quality modelling system MM5/CHIMERE was applied over Portugal for a winter month, for the following three scenarios: the reference scenario, considering the actual emissions of PM10; scenario 1, where residential wood combustion emissions are not considered; and scenario 2, which takes into account a complete conversion from traditional fireplaces to certified appliances (with a 90% reduction in PM emissions). The residential wood combustion contribution to PM10 air quality concentration values during January 2007 ranges from 0 to 14 μg m?3, with a mean contribution of 10 μg m?3 in the Lisboa area and 6 μg m?3 in the Porto region. Concerning the legislated values, the area where the daily average limit value (50 μg m?3) is exceeded decreases by 46% in the simulation when residential combustion is not considered. The modelling results for scenario 2 are not significantly different from those for scenario 1. In summary, the regulation of the residential wood combustion sector is as an effective way to reduce the PM10 levels in the atmosphere as regards air quality plans and programs.  相似文献   

14.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

15.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   

16.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

17.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

18.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

19.
Atmospheric particulate matter (PM) samples from 12 sites in southern California, collected as part of the Southern California Children's Health Study (SCCHS), were analyzed using gas chromatography/mass spectrometry (GC/MS) techniques. Ninety-four organic compounds were quantified in these samples, including n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAH), hopanes, steranes, aromatic diacids, aliphatic diacids, resin acids, methoxyphenols, and levoglucosan. Annual average concentrations of all detected compounds, as well as average concentrations for three seasonal periods, were determined at all 12 sites for the calendar year of 1995. These measurements provide important information about the seasonal and spatial distribution of particle-phase organic compounds in southern California. Also, co-located samples from one site were analyzed to assess precision of measurement. Excellent agreement was observed between annual average concentrations for the broad range of organic compounds measured in this study. Measured concentrations from the 12 sampling sites were used in a previously developed molecular-marker source apportionment model to quantify the primary source contributions to the PM10 organic carbon and mass concentrations at these 12 sites. Source contributions to atmospheric PM from six important air pollution sources were quantified: gasoline-powered motor vehicle exhaust, diesel vehicle exhaust, wood smoke, vegetative detritus, tire wear, and natural gas combustion. Important trends in the seasonal and spatial patterns of the impact of these six sources were observed. In addition, contributions from meat smoke were detected in selected samples.  相似文献   

20.
Abstract

In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003–2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute ~65–80% to measured OC, with wood smoke, on average, accounting for ~41% of OC and ~18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号