首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A routing procedure is introduced which accounts for the loss of a conservative solute tracer from preferred paths during macropore flow. Water flow is treated as a series of kinematic waves from which the tracer is lost due to mixing previously stored soil water, and an expression for solute loss is added to a previously developed model. The model parameters are estimated through experiments at three different input rates applied to a column of a macroporous forest soil.The results of seven experimental runs indicate that solute losses are consistently highest at the early stages of infiltration and drainage flow. An empirical relationship is proposed which links the frequency distribution of the flow parameter with that for solute loss from the preferred path during transient water flow and solute transport.  相似文献   

2.
In this paper, we used the continuous time random walk (CTRW) framework to characterize the transport process in 1250-cm long one-dimensional homogenous and heterogeneous soil columns at the experiments conducted by Huang et al. [Huang, K., Toride, N., van Genuchten, M.Th., 1995. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Trans. Porous Media. 18, 283-302]. The transport process was also simulated by using the advection-dispersion equation (ADE) and the spatial fractional advection-dispersion equation (FADE) for comparison. In the homogeneous soil column, the non-Fickian behavior is found at the distances less than 1000cm with beta values larger than 1.60, but less than 2, and Fickian form transport is obtained at distances larger than 1000cm with beta values larger than 2. In the heterogeneous soil column, we found the most anomalous behavior at distances from 200cm to 700cm with beta values ranging from 0.894 to 0.958, and non-Fickian transport process is observed at distances larger than 800cm with beta values in the range between 1 and 1.3. More significant non-Fickian behavior is found for transport in the heterogeneous soil column than that in the homogeneous soil column. The CTRW fits to the breakthrough curves (BTCs) have lower values of root mean square error (RMSE) and higher values of determination coefficient (r(2)), with respect to the fits of ADE and FADE. The CTRW model also is better captures the full evolution of BTCs, and especially their tails.  相似文献   

3.
Some of the basic assumptions of the advection-dispersion model (AD-model) are revisited. This model assumes a continuous mixing along the flowpath similar to Fickian diffusion. This implies that there is a constant dispersion length irrespective of observation distance. This is contrary to most field observations. The properties of an alternative model based on the assumption that individual water packages can retain their identity over long distances are investigated. The latter model is called the multi-channel model (MCh-model). Inherent in the latter model is that if the waters in the different pathways are collected and mixed, the "dispersion length" is proportional to distance. The conditions for when non-mixing between adjacent streams can be assumed are explored. The MCh- and AD-models are found to have very similar residence time distributions (RTD) for Peclet numbers larger than 3. A generalized relation between flowrate and residence time is developed, including the so-called cubic law and constant aperture assumptions. The two models extrapolate very differently when there is strong matrix interaction. The AD-model could severely underestimate the effluent concentration of a tracer pulse and overestimate the residence time. The conditions are explored for when in-filling particles in the fracture will not be equilibrated but will act as if there was seemingly a much larger flow wetted surface (FWS). It is found that for strongly sorbing tracers, relatively small particles can act in this way for systems and conditions that are typical of many tracer tests. The assumption that the tracer residence time found by cautiously injecting a small stream of traced water represents the residence time in the whole fracture is explored. It is found that the traced stream can potentially sample a much larger fraction of the fracture than the ratio between the traced flowrate and the total pumped flowrate. The MCh-model was used to simulate some recent tracer tests in what is assumed to be a single fracture at the Asp? Hard rock laboratory in Sweden. Non-sorbing tracers, HTO and Uranin were used to determine the mean residence time and its variance. Laboratory data on diffusion and sorption properties were used to "predict" the RTD of the sorbing tracers. At least 30 times larger FWS or 1000 times larger diffusion or sorption coefficients would be needed to explain the observed BTCs. Some possible reasons for such behavior are also explored.  相似文献   

4.
In preparation for a field experiment where a NAPL will be injected into a fractured sandstone aquifer, a 2D invasion percolation model of DNAPL migration in a single horizontal fracture with varying aperture has been developed. This simulation investigated the effect of spatially correlated fracture aperture fields on pressure-saturation relationships as a function of variable aperture mean, standard deviation, and spatial correlation statistics under hydrostatic conditions. Results from spatially correlated variable aperture fields can be significantly different from random fields. Longer ranges decreased entry pressures and higher standard deviations decreased nonwetting phase saturations. Mean aperture is the major control on displacement pressure, entry pressure and the form of the pressure-saturation curve. Simulation results using statistical parameters for a variable aperture natural sandstone fracture as described by Yeo et al. [International Journal of Rock Mechanics and Mining Sciences 35 (1998) 1051] closely resemble a Brooks-Corey pressure-saturation function, and exhibit a distinct entry pressure followed by a rapid increase in nonwetting phase saturation. Graphical estimates of entry pressure provide a good approximation of the critical aperture controlling the formation of a continuous nonwetting phase pathway in a variable aperture fracture. Consequently, we show that multiphase flow concepts developed for porous media can successfully be applied to variable aperture fractures. Entry pressure correlates well to the mean aperture in these simulations when using a Gaussian distribution of fracture aperture. Interpreted aperture distributions from NAPL injection experiments do not fit the true distribution well at low nonwetting phase saturations, but do at higher saturations above the entry pressure. Consequently, true, mechanical aperture variation within a fracture plane cannot be determined from NAPL injection experiments either in the field or laboratory.  相似文献   

5.
A solute transport model that describes nonequilibrium adsorption in soil/groundwater systems by mass transfer equations for film and intraparticle diffusion is presented. The model is useful in cases where breakthrough curve spreading cannot be explained by dispersion only. To evaluate its validity, the model was applied to several data sets from column experiments. The validity was also proved by a comparison with an analytical solution for the limiting case of predominating dispersion. Furthermore, a sensitivity analysis was performed to illustrate the influence of different process and sorption parameters (pore water velocity, intraparticle mass transfer coefficient, isotherm nonlinearity) on the shape of the calculated breakthrough curves. The application of the proposed model is discussed in comparison to the widely used dispersed flow/local equilibrium model, and a relationship between both models, which is based on a lumped parameter approach, is shown.  相似文献   

6.
Bester K  Klasmeier J  Kupper T 《Chemosphere》2008,71(11):2003-2010
The fate and mass flows of OTNE ([1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethylnaphthalen-2yl]ethan-1-one) which is commercialized as Iso-E-Super were studied in three large scale sewage treatment plants (STPs) in detail. The results are compared to 14 smaller ones located in Germany and Switzerland. OTNE inflow concentrations ranged from 4000 to 13,000 ngl(-1) while the effluent concentrations ranged from 500 to 6,900 ngl(-1). It is eliminated from the waste water with 56-64% during waste water treatment. High OTNE concentrations in sewage sludge showed that the elimination was mainly driven by sorption to sludge. This complies with major elimination in the first settling basins (primary settling tanks) while it was removed to a lesser extent in the aeration basin of the activated sludge treatment or in successive biofilters. The mass flows of OTNE in the influent of the German STPs were between 0.9 and 1.9 g per inhabitant and year. In the annual effluents mass flows of OTNE ranged between 0.2 and 0.8 g per inhabitant which complies with data measured in 13 smaller STPs from Switzerland. The similarity of data suggests that the observed mass flow data might be extrapolated to other European regions.  相似文献   

7.
This study numerically investigates the influence of initial water content and rain intensities on the preferential migration of two fluorescent tracers, Acid Yellow 7 (AY7) and Sulforhodamine B (SB), through variably-saturated fractured clayey till. The simulations are based on the numerical model HydroGeoSphere, which solves 3D variably-saturated flow and solute transport in discretely-fractured porous media. Using detailed knowledge of the matrix, fracture, and biopore properties, the numerical model is calibrated and validated against experimental high-resolution tracer images/data collected under dry and wet soil conditions and for three different rain events. The model could reproduce reasonably well the observed preferential migration of AY7 and SB through the fractured till, although it did not capture the exact depth of migration and the negligible impact of the dead-end biopores in a near-saturated matrix. A sensitivity analysis suggests fast flow mechanisms and dynamic surface coating in the biopores, and the presence of a plough pan in the till.  相似文献   

8.
Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability–possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.  相似文献   

9.
Analytical solutions are widely used as screening tools for estimating the potential for contaminant transport in groundwater, or for interpreting tracer tests or groundwater quality data. A solution for three-dimensional solute migration from a plane-source source that is frequently used in practice is the approximate solution of Domenico [J. Hydrol. 91 (1987) 49-58]. A more rigorous solution to the same problem was provided by Sagar [ASCE, J. Hydraul. Div. 108, no. HY1 (1982) 47-62]. A comprehensive and unambiguous comparison between these two solutions is provided using dimensionless analysis. The solutions are first cast in terms of dimensionless parameters and then used to provide type curves covering a wide range of dimensionless parameter values. Results show that while discrepancies between the two solutions are relatively negligible along the plume centreline (for flow regimes dominated by advection and mechanical dispersion), large concentration differences can be observed as lateral distance from the centreline increases, especially in the presence of solute decay.  相似文献   

10.
The thermal decomposition of polyethylene glycol was investigated by using a technique combining evolved gas analysis (time-resolved pyrolysis) with ion-attachment mass spectrometry. This technique allows the detection of intact pyrolysis products and, therefore, offers the opportunity for direct real-time monitoring of thermal by-products. Unstable products can thus be detected; for instance, many highly reactive organic peroxides, such as CH3OOH and HOCH2OOH, were found in this study. Classification analysis revealed 10 major compositional formulas among the product species: CnH2n+2O, CnH2n+2O2, CnH2n+2O3, CnH2n+2O4, CnH2n+2O5, CnH2n+2O6, CnH2n+2O7, CnH2nO, CnH2nO2, and HO(CH2CH2O)nH ethylene glycol oligomers. The Li+ ion adduct mass spectra showed a characteristic profile in terms of both the appearance of unique components and the distribution of pyrolysis products. Among the products of the thermal decomposition of PEG, formaldehyde (HCHO) and organic peroxides were particularly interesting. Formaldehyde, one of the 10 most abundant products, is a known human carcinogen. The detection of peroxides suggests that they may form during the incineration of PEG, which may have important environmental implications. The existence of peroxide products may have implications for chemical evolution in incinerator systems.  相似文献   

11.
The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed in single fractures.  相似文献   

12.
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. In particular it is shown that the Crank–Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection–dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution.  相似文献   

13.
By analytical and numerical analysis of solutions of the advection-diffusion equation for continuous line-sources in highly simplified models of breeze circulation with wind direction reversal in space and/or in time, it is shown that, because of the continuous accumulation of recycled pollutants over a restricted space area around the source location, the ground level concentration may not tend to a bounded, time-asymptotic distribution as in the case of unidirectional wind speed. Moreover, it is shown that the along-wind distribution may present a bimodal configuration with large peak values which increase monotonically and tend to combine for asymptotic times. These features cannot be reproduced by any model based on a steady-state formula, like the conventional Gaussian model.  相似文献   

14.
Model predictions are uncertain because of uncertainties on future and/or anthropogenic stresses, parameter values and conceptual models. The first two groups of problems can be addressed through rather systematic methods (scenario analysis, error transmission techniques, automatic calibration algorithms, etc.). However, conceptual uncertainties are rarely given adequate attention. The objective of this paper is to synthesize conceptual difficulties associated with transport. These include: (1) processes that are significant at small scales may not be relevant at large scales; (2) inversely, new processes (e.g., dispersion) emerge in response to increase in scale and the way to represent them may depend on the assumed model structure; (3) the observed shapes of both breakthrough curves and pollutant plumes are not well represented by the classical transport equation; (4) porosities and dispersivities derived from field tracer tests often exhibit a directional dependence; etc. Though not directly related to solute transport, scale effects on hydraulic conductivity may also affect solute transport modelling. When these anomalies are examined, it is concluded that they are directly or indirectly caused by heterogeneity. Current approaches for dealing with heterogeneity can be divided into stochastic and deterministic. Stochastic methods have been successful in explaining qualitatively some anomalies of solute transport, but they appear to be far from reaching a stage at which they can be used routinely for solving realistic field problems. On the other hand, when applied with care, deterministic methods have been successfully used in actual problems. Yet, it can be argued that they fail to account for small-scale variability of concentrations so that they would become ineffective when dealing with nonlinear processes, such as chemical reactions. Relevance of on-going research for overcoming these difficulties is discussed.  相似文献   

15.
Analyses of inorganic and organic aerosols by Field Desorption Mass Spectrometry at high resolution are presented in this article. The method is unique in giving direct semi-quantitative information on intact inorganic salts, as they are present in the sample. Airborn polar organic compounds are also readily detected. Due to the high sensitivity of the method, sub-microgram quantities are sufficient for an analysis. Aerosols can therefore be collected by direct impaction on the field emitter which is subsequently transferred into the mass spectrometer. Advantages of this procedure are its relative simplicity and rapidity, providing information complementary to established methods of aerosols analysis.  相似文献   

16.
编制了BSM1的仿真程序,并分析了不同进水条件下ASM1模型的16个参数对BSM1出水COD、TN、NH4+-N、NO3--N灵敏度的影响.结果表明,9个参数的灵敏度在规定的划分范围内没有区别,7个参数在不同进水条件下差别较明显;各参数灵敏度的变化规律,与出水的NH4+-N及NO3--N浓度变化有一定相关性;灵敏度变化与ASM1模型速率方程中的开关函数有关.研究不同进水条件下模型参数的灵敏度,有助于提高污水处理仿真计算的准确性.  相似文献   

17.
A new model to describe flow and transort in fractured rocks is proposed. It is based on the concept of a network of channels. The individual channel members are given stochastically selected conductances and volumes. Flow-rate calculations have been performed. For large standard deviations in conductances, channeling becomes pronounced with most of the water flowing in a few paths. The effluent patterns and flow-rate distributions obtained in the simulations have been compared to three field measurements in drifts and tunnels of flow-rate distributions. Standard deviations of channel conductances were between 1.6 and 2.4 in some cases. A particle-following technique was used to simulate solute transport in the network. Non-sorbing as well as sorbing solute transport can be simulated. By using a special technique, solutes that diffuse into the rock matrix can also be simulated.  相似文献   

18.
Several previously reported laboratory studies related to transport of solutes through packed columns were utilized to develop predictive relationships for mass-transfer rate coefficient. The data were classified into two groups: those obtained under rate-limited mass transfer between mobile and immobile water regions (physical nonequilibrium conditions), and those derived from rate-limited mass transfer between instantaneous and slow sorption sites (sorption nonequilibrium conditions). The mass-transfer coefficient in all these studies was obtained by fitting breakthrough data to a transport model employing a first-order rate limitations with a "constant" mass-transfer coefficient, independent of flow conditions. This study demonstrated that the mass-transfer coefficient in these models is dependent on system parameters including pore-water velocity, length-scale, retardation coefficient, and particle or aggregate size. Predictive relationships were developed, through regression analysis, relating mass-transfer coefficient to residence time. The developed relationships adequately estimated previously reported field mass-transfer values. Successful simulations of field desorption data reported by Bahr [J. Contam. Hydrol. 4 (1989) 205] further demonstrate the potential applicability of the developed relationships.  相似文献   

19.
An analytical method capable of determining trace levels of BTEX-aromatics (benzene, toluene, ethylbenzene, m-, p- and o-xylenes) in the atmosphere with as high resolution as possible has been developed. The method is based on the preconcentration of air samples using a multibed tube (Carbopack C, Carbograph 1) at ambient temperature, followed by thermal desorption, and analysis of aromatic species by a beta-cyclodextrin capillary chromatography coupled with mass spectrometry. The resolution achieved was sufficient for individual separation of BTEXs as well as m- and p-xylenes. The BTEX-ratios have been determined in an air tunnel and in on-road, suburban and rural forest atmosphere. The ethylbenzene/m-xylene ratios could provide a deep insight into anthropogenic related NMHC patterns at different locations and under different meteorological conditions and may reflect photochemical processes in the best way.  相似文献   

20.
Environmental Science and Pollution Research - Analytical models of solute transport have been widely used to aid the understanding of the physical and chemical processes undergone by substances...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号