首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Purpose

The purpose of the research is to investigate the applicability of the low-cost natural biosorbents for the removal of Pb(II) ions from aqueous solution and effluent from battery industry.

Methods

Six different biosorbents namely rice straw, rice bran, rice husk, coconut shell, neem leaves, and hyacinth roots have been used for the removal of Pb(II) ions from aqueous solution in batch process. All the biosorbents were collected from local area near Kolkata, West Bengal, India. The removal efficiency was determined in batch experiments for each biosorbent.

Results

The biosorbents were characterized by SEM, FTIR, surface area, and point of zero charge. The sorption kinetic data was best described by pseudo-second-order model for all the biosorbents except rice husk which followed intraparticle diffusion model. Pb(II) ions adsorption process for rice straw, rice bran, and hyacinth roots were governed predominately by film diffusion, but in the case of rice husk, it was intraparticle diffusion. Film diffusion and intraparticle diffusion were equally responsible for the biosorption process onto coconut shell and neem leaves. The values of mass transfer coefficient indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast for all cases. Maximum monolayer sorption capacities onto the six natural sorbents studied were estimated from the Langmuir sorption model and compared with other natural sorbents used by other researchers. The Elovich model, the calculated values of effective diffusivity, and the sorption energy calculated by using the Dubinin?CRadushkevich isotherm were indicated that the sorption process was chemical in nature. The thermodynamic studies indicated that the adsorption processes were endothermic. FTIR studies were carried out to understand the type of functional groups responsible for Pb(II) ions binding process. Regeneration of biosorbents were carried out by desorption studies using HNO3. Battery industry effluents were used for the application study to investigate applicability of the biosorbents.

Conclusion

The biosorbents can be utilized as low-cost sorbents for the removal of Pb(II) ions from wastewater.  相似文献   

2.
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe(3+), 98% of Fe(2+) and Zn(2+) and 95% Cu(2+) uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe(2+), 89% Zn(2+) and 75% Cu(2+) bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.  相似文献   

3.
Biochar has been considered as a potential sorbent for removal of frequently detected pesticides in water. In the present study, modified and non-modified rice husk biochars were used for aqueous carbofuran removal. Rice husk biochars were produced at 300, 500, and 700 °C in slow pyrolysis and further exposed to steam activation. Biochars were physicochemically characterized using proximate, ultimate, FTIR methods and used to examine equilibrium and dynamic adsorption of carbofuran. Increasing pyrolysis temperature led to a decrease of biochar yield and increase of porosity, surface area, and adsorption capacities which were further enhanced by steam activation. Carbofuran adsorption was pH-dependant, and the maximum (161 mg g?1) occurred in the vicinity of pH 5, on steam-activated biochar produced at 700 °C. Freundlich model best fitted the sorption equilibrium data. Both chemisorption and physisorption interactions on heterogeneous adsorbent surface may involve in carbofuran adsorption. Langmuir kinetics could be applied to describe carbofuran adsorption in a fixed bed. A higher carbofuran volume was treated in a column bed by a steam-activated biochar versus non-activated biochars. Overall, steam-activated rice husk biochar can be highlighted as a promising low-cost sustainable material for aqueous carbofuran removal.  相似文献   

4.
Mechanisms of lead, copper, and zinc retention by phosphate rock   总被引:31,自引:0,他引:31  
The solid-liquid interface reaction between phosphate rock (PR) and metals (Pb, Cu, and Zn) was studied. Phosphate rock has the highest affinity for Pb, followed by Cu and Zn, with sorption capacities of 138, 114, and 83.2 mmol/kg PR, respectively. In the Pb-Cu-Zn ternary system, competitive metal sorption occurred with sorption capacity reduction of 15.2%, 48.3%, and 75.6% for Pb, Cu, and Zn, respectively compared to the mono-metal systems. A fractional factorial design showed the interfering effect in the order of Pb>Cu>Zn. Desorption of Cu and Zn was sensitive to pH change, increasing with pH decline, whereas Pb desorption was decreased with a strongly acidic TCLP extracting solution (pH = 2.93). The greatest stability of Pb retention by PR can be attributed to the formation of insoluble fluoropyromorphite [Pb(10)(PO(4))(6)F(2)], which was primarily responsible for Pb immobilization (up to 78.3%), with less contribution from the surface adsorption or complexation (21.7%), compared to 74.5% for Cu and 95.7% for Zn. Solution pH reduction during metal retention and flow calorimetry analysis both supported the hypothesis of retention of Pb, Cu, and Zn by surface adsorption or complexation. Flow calorimetry indicated that Pb and Cu adsorption onto PR was exothermic, while Zn sorption was endothermic. Our research demonstrated that PR can effectively remove Pb from solutions, even in the presence of other heavy metals (e.g. Cu, Zn).  相似文献   

5.
Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)—an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer–Emmett–Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions.  相似文献   

6.
Sorption of copper and nickel by spent animal bones   总被引:2,自引:0,他引:2  
al-Asheh S  Banat F  Mohai F 《Chemosphere》1999,39(12):2087-2096
Animal bone is able to adsorb copper and nickel ions from their single aqueous solutions. It was noted that a decrease in the sorbent concentration with constant copper or nickel concentration, or an increase in the copper or nickel concentration with a constant sorbent concentration resulted in a higher metal loading per unit weight of the sorbent. Increase in the initial pH of the metal solution resulted in an increase in the metals uptake per unit weight of the sorbent. Freundlich isotherm model was found to be applicable for the experimental data of Cu2+ and Ni2+. The results showed that animals bones can be used for the adsorption of the Cu2+ and Ni2+ with higher affinity toward Cu2+ ions. The new sorbent was able to decrease copper concentration to a limit lower than the limit permitted by the environmental regulations.  相似文献   

7.
Heavy metal removal by activated sludge: influence of Nocardia amarae.   总被引:3,自引:0,他引:3  
The goal of this research was to examine the metal binding capacity of Nocardia amarae cells and to assess the influence of Nocardia cells on the overall metal binding capacity of activated sludge. Metal sorption capacities of the pure Nocardia cells and activated sludge biomass containing various levels of added Nocardia pure cultures were determined by a series of batch experiments. Batch sorption isotherms for nickel (Ni), copper (Cu), and cadmium (Cd) showed that the pure culture of N. amarae exhibited significantly higher metal sorption capacity than the activated sludge biomass obtained from Wilmington Wastewater Treatment Plant (Wilmington, DE). Surface area of biomass estimated by a dye technique showed that pure N. amarae cells growing at stationary phase have substantially more specific surface area than that of activated sludge from Wilmington Treatment Plant. A two-fold difference in specific surface area indicated that the higher metal sorption capacity of Nocardia cells may be due to the higher specific surface area. The metal sorption capacity of activated sludge increased proportionally with the amount of Nocardia cells present in the mixed liquor. This increase was attributed to the greater specific surface area of the mixed liquor samples containing greater amounts of Nocardia cells.  相似文献   

8.
采用自制木粉/壳聚糖接枝丙烯酸-丙烯酰胺吸附树脂R1、R2、R3对二元金属离子Cu2+/Pb2+和Zn2+/Pb2+溶液中的吸附性能进行了较系统考察。Pb2+离子溶液中存在竞争离子Cu2+、Zn2+时,随竞争离子浓度增加,3种吸附树脂R1、R2、R3对Pb2+的吸附量明显下降,而竞争离子吸附量显著增加。二元溶液中各金属离子浓度相同时,3种树脂对竞争离子Cu2+、Zn2+的吸附量大于对Pb2+的吸附量;各溶液中分别加入NaCl及NaNO3、尿素后,对Pb2+离子的吸附量下降迅速。随吸附树脂用量增加,竞争离子Cu2+、Zn2+的吸附量逐渐减小,Pb2+的吸附量在吸附树脂用量0.10 g/L(Zn2+/Pb2+溶液)或0.15 g/L(Cu2+/Pb2+溶液)时出现最大值。溶液pH值对树脂吸附性能有显著影响。3.0  相似文献   

9.
A comparative study on metal sorption by brown seaweed   总被引:7,自引:0,他引:7  
Tsui MT  Cheung KC  Tam NF  Wong MH 《Chemosphere》2006,65(1):51-57
This study compared the sorption of Ag, Cd, Co, Cd, Mn, Ni, Pb and Zn by a Ca-treated Sargassum biomass at pH 5.0, under low and high ionic strength (IS) conditions. The sorption isotherms of As [As(V)] and Cr [Cr(III) and Cr(VI)] were also determined at low IS. The isotherm data for the eight cationic metals and Cr(III) were well fitted by Langmuir equations. Generally, the maximum metal uptake (Umax) followed: Cr(III) > Pb approximately Cu > Ag approximately Zn approximately Cd > Ni approximately Mn approximately Co > Cr(VI) > As(V) at low IS and Pb > Cu > Co > Mn approximately Cd > Zn approximately Ag > Ni at high IS. As(V) did not bind to the seaweed at pH 5.0. The results indicated that sorption of Pb was not affected by the increasing IS, though the percentage of free Pb ions in the water was greatly reduced as predicted by the speciation model. High IS lowered Umax by 10-36% (except Co and Pb), and lowered the affinity constant of the metal by 33-91% for all cationic metals, as compared to low IS. Moreover, the removal efficiency of the cationic metals and Cr decreased exponentially with initial metal concentrations and was lower at high IS. Ion-exchange was the mechanism responsible for the cationic metal sorption onto the seaweed, and Na ion interfered with the cationic metal binding through electrostatic interaction. In conclusion, this study showed the differential binding capacity of the Sargassm biomass for different metals and oxidation states and the differential effects of IS. According to the present results, Sargassum may be considered a good biosorbent for cationic metals (especially Pb) in both low and high-salt containing wastewater.  相似文献   

10.
Akhtar M  Hasany SM  Bhanger MI  Iqbal S 《Chemosphere》2007,66(10):1829-1838
Sorptive potential of selected agricultural waste materials i.e. rice (Oryza sativa) bran (RB), bagasse fly ash (BFA) of sugarcane (Saccharum officinarum), Moringa oleifera pods (MOP) and rice husk (RH) for the removal of methyl parathion pesticide (MP) from surface and ground waters has been investigated. Optimization of operating parameters of sorption process, i.e. sorbent dose, agitation time, pH, initial concentration of sorbate, and temperature have been studied. The sorption data fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) sorption isotherms. The maximum capacities of RB, BFA, MOP and RH for MP were calculated to be 3.6+/-0.8, 5.3+/-1.4, 5.2+/-1.5 and 4.7+/-1.0 mmolg(-1) by Freundlich, 0.39+/-0.009, 0.39+/-0.005, 0.36+/-0.004 and 0.35+/-0.008 mmolg(-1) by Langmuir and 0.9+/-0.08, 1.0+/-0.10, 1.0+/-0.10 and 0.9+/-0.07 mmolg(-1) by D-R isotherms respectively, employing 0.1g of each sorbent, at pH 6, 90 min agitation time and at 303 K. Application of first order Lagergren and Morris-Weber equations to the kinetic data yielded correlation coefficients, close to unity. Thermodynamic parameters of sorption process, i.e. DeltaH, DeltaS and DeltaG were computed and their negative values indicated the exothermic and spontaneous nature of sorption process. The pesticide may be stripped by sonication with methanol, making the regeneration and reutilization of sorbents promising. The sorbents investigated exhibited their potential applications in water decontamination, treatment of industrial and agricultural waste waters.  相似文献   

11.
Radionuclide sorption by natural and modified clays is extensively accepted to be an important process from the radioactive waste point of view. This work focused on modification of natural attapulgite with a layered double hydroxide to produce a novel chemisorbent for Sr2+, Ni2+, and Co2+ removal from multicomponent solution. The structural and surface characteristics of both attapulgite (ATP) and modified attapulgite (LDH-ATP) were investigated using XRD, FTIR, SEM, and thermal analysis. Comparison of sorption features of Sr2+, Ni2+, and Co2+ onto ATP and LDH-ATP was achieved; the results indicated that LDH-ATP was the most efficient sorbent for Sr2+, Ni2+, and Co2+. Kinetic studies established that the sorption is fast and reaching >90% within 30 min. The sorption of Sr2+, Ni2+, and Co2+ are well defined by non-linear pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity was determined using homogeneous surface diffusion (HSDM) model and found in the order 10−13 m2/min; this confirmed that the sorption of the three ions is chemisorption process. LDH-ATP can be employed as a candidate chemisorbent for the removal of some metal ions from waste solution.  相似文献   

12.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

13.
In this study, the removal of Cr(III) and Cu(II) from contaminated wastewaters by rice husk, as an organic solid waste, was investigated. Experiments were performed to investigate the influence of wastewater initial concentration, pH of solution, and contact time on the efficiency of Cr(III) and Cu(II) removal. The results indicated that the maximum removal of Cr(III) and Cu(II) occurred at pH 5–6 by rice husk and removal rate increased by increased pH from 1 to 6. It could be concluded that the removal efficiency was enhanced by increasing wastewater initial concentration in the first percentage of adsorption and then decreased due to saturation of rice husk particles. Also according to achieved results, calculated saturation capacity in per gram rice husk for Cr(III) and Cu(II) were 30 and 22.5 mg?g?1, respectively. The amounts of Cr(III) and Cu(II) adsorbed increased with increase in their contact time. The rate of reaction was fast. So that 15–20 min after the start of the reaction, between 50 and 60 % of metal ions were removed. Finally, contact time of 60 min as the optimum contact time was proposed.  相似文献   

14.
Removal of metal ions and humic acid from water by iron-coated filter media   总被引:8,自引:0,他引:8  
Lai CH  Chen CY 《Chemosphere》2001,44(5):1177-1184
Iron oxide is an excellent, regenerable adsorbent, and often controls free metals through adsorption reaction. The utilization of heating process for coating iron oxide on sand surface allowed the media to be used in a packed column. Iron-coated sand was investigated for adsorbing metal ions and natural organic matter from water by batch and column experiments. Chemical analysis (energy dispersive analysis of X-ray, EDAX) was used for characterizing the copper and lead adsorption sites on iron-coated sand. From the batch experiment results, the copper and lead ions could be removed simultaneously by the iron-coated sand in the competition adsorption system. The interaction between copper, lead ions and iron oxide on sand surface was primarily the chemical bonds. The maximum adsorption capacities of iron-coated sand for copper and lead were 0.259 mg Cu/g-sand and 1.211 mg Pb/g-sand, respectively. The presence of humic acid led to increase the adsorption of copper and lead. Results from column experiments indicated that the copper ions, lead ions and humic acid could be removed completely before the breakpoint. Consequently, the iron-coated sand may be applied for the adsorption/filtration of metal ions and natural organic matters from water.  相似文献   

15.
Competing ions strongly affect heavy metal sorption onto the solid surfaces of soil. This study evaluated competitive sorption of Cd, Cu, Ni, Pb and Zn on three soils: Calcixerollic Xerochrept, Paralithic Xerorthent and Lithic Haplumbrept. Monometal and competitive sorption isotherms were obtained at 25 degrees C. The individual effect of ions on retention of the others was ascertained by a fractional factorial analysis design. Most of the sorption isotherms belonged to type L subtype 2 in the classification of Giles. In competitive sorption the initial linear part was shorter and the knee sharper when compared with monometal sorption isotherms. Parameters related to sorptive capacity, such as Point B, Langmuir monolayer and Freundlich distribution coefficient, were higher in monometal than in competitive sorption, and in basic soils than in acidic soil. Calcium desorbed at different points of the sorption isotherms indicated that cationic exchange with Ca was the main retention mechanism in calcareous soils. For Pb, the ratio Ca desorbed/Pb sorbed was close to one; for Cu, Ni and Zn the ratio ranged from 1.20 to 1.37, probably due to partial dissolution of calcium carbonates by hydrolytic processes during retention. On the other hand, Cd had a ratio around 0.6 reflecting another additional retention mechanism, probably surface complexation. Fractional factorial design confirmed that the presence of the cations investigated reduced the amount of the five metals retained, but the presence of Cu and Pb in the system depressed Ni, Cd and Zn sorption more than the inverse. Cation mobility was enhanced when equilibrium concentration increased and the effect was higher in Ca-saturated soils.  相似文献   

16.
Sorption and leaching of the organophosphate (OP) pesticides chlorpyrifos, profenofos, methyl parathion and malathion were investigated with four different types of biomass: coconut husk, rice husk, peat moss and peanut shell. Organic carbon contents of the biomass were in the range of 35.4–45.4%. Sorption studies were carried out by the batch (equilibrium) method at 4 different OP spike concentrations and at pH 3–7. Sorption isotherms conformed to a linear Freundlich equation and the Freundlich constant or sorption coefficient (KD) confirmed that biomass organic carbon content was the principal sorbent factor affecting OP sorption. For a given sorbent, correlation of the extent of sorption with sorbate chemical properties was examined. Column leaching experiments involving different masses of coconut husk and peanut shell pre-spiked with OPs at the level equivalent to actual spraying concentrations in some Thai tangerine orchards were conducted. These experiments included repeated spikings and leaching. A water flow rate of 20 mL min?1 was employed corresponding to the current average watering regime. Retardation and biodegradation with these sorbents were also examined.  相似文献   

17.
Sorption and leaching of the organophosphate (OP) pesticides chlorpyrifos, profenofos, methyl parathion and malathion were investigated with four different types of biomass: coconut husk, rice husk, peat moss and peanut shell. Organic carbon contents of the biomass were in the range of 35.4-45.4%. Sorption studies were carried out by the batch (equilibrium) method at 4 different OP spike concentrations and at pH 3-7. Sorption isotherms conformed to a linear Freundlich equation and the Freundlich constant or sorption coefficient (KD) confirmed that biomass organic carbon content was the principal sorbent factor affecting OP sorption. For a given sorbent, correlation of the extent of sorption with sorbate chemical properties was examined. Column leaching experiments involving different masses of coconut husk and peanut shell pre-spiked with OPs at the level equivalent to actual spraying concentrations in some Thai tangerine orchards were conducted. These experiments included repeated spikings and leaching. A water flow rate of 20 mL min(-1) was employed corresponding to the current average watering regime. Retardation and biodegradation with these sorbents were also examined.  相似文献   

18.
Abstract

Adsorption, desorption, potential and selective distribution of Cu, Zn, Cd, Pb and Ni were investigated in three typical soils of Japan under flooded condition.

The results indicate that the sorption of all heavy metals was linear upto the maximum concentration (500 μg/g soil) employed in the present studies in all the soils. The magnitude of sorption in general was in the order of Pb > Cu > Zn > Cd > Ni. The adsorption coefficients showed wide variations among different soils as well as metal ions. The hysteresis of sorption and desorption by KNO3 was well pronounced for both the metal ions and the soils. The desorption rate was greater than the fixation rate indicating the predominance of the chemosorption over physical processes. The major portion of sorbed metals were retained in the unextractable form, which over all accounted for more than 50% of the sorbed metals.  相似文献   

19.
The competitive sorption among Cu, Pb and Cr in ternary system on Na-montmorillonite at pH 3.5, 4.5 and 5.5 and at different heavy metal concentrations, and the effect of varying concentrations of Al, Fe, Ca and Mg on the sorption of heavy metals were studied. Competitive sorption of Cu, Pb and Cr in ternary system on montmorillonite followed the sequence of Cr ? Cu > Pb. Moreover, the competition was weakened by the increase of pH while was intensified by the increase of heavy metal concentration. The sorption of heavy metal on montmorillonite was inhibited by the presence of Ca and Mg, while Al and Fe showed different patterns in affecting heavy metal sorption. Aluminum and Fe generally inhibited the sorption of heavy metal when the pH and/or concentration of major elements were relatively low. However, promoting effects on heavy metal sorption by Al and Fe were found at relatively high pH and/or great concentration of major elements. The inhibition of major elements on heavy metal sorption generally followed the order of Al > Fe > Ca ? Mg, while Fe was more efficient than Al in promoting the sorption of heavy metals. These findings are of fundamental significance for evaluating the mobility of heavy metals in polluted environments.  相似文献   

20.
To develop an efficient bio-immobilization approach for the remediation of heavy metal pollution in soil, a mutant species of Bacillus subtilis (B38) was obtained by ultraviolet irradiation and selection under high concentration of cadmium (Cd) in a previous study. In the present study, to check the applicability of this mutated species to the sorption and immobilization of other metals, the sorption of four heavy metals, Cd, chromium (Cr), mercury (Hg), and lead (Pb), on living and nonliving B38 in single- and multiple-component systems under different conditions was investigated using batch experiments. Rapid metal binding occurred on both living and nonliving B38 during the beginning of the biosorption. The sorption kinetics followed the exponential equation for living biomass and the pseudo-first-order Lagergren model for nonliving biomass, with r 2 values in the range of 0.9004-0.9933. The maximum adsorptive quantity of the heavy metals on B38 changed with the solution pH, temperature, biomass dose, and ionic strength. The nonliving biomass generally showed greater or similar adsorptive capacities as compared with the living biomass and was not likely to be affected by the solution parameters. The bacterium had a stronger affinity to the cationic heavy metals than to the anionic one, and the equilibrium sorption amounts were 210.6, 332.3, and 420.9 mg/g for Cd(II), Hg(II), and Pb(II), respectively. The results of binary and ternary sorption experiments indicated that the metals with the higher sorption capacity in the single-component systems showed greater inhibitory effects on the biosorption of other metal ions in the multiple-component systems, but the sorption sites of Hg and Cd or Pb are likely to be different. The results of this study illustrated that the mutant species is a promising biosorbent for the remediation of multiple heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号