首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how vulnerable forest ecosystems are to climate change is a key requirement if sustainable forest management is to be achieved. Modelling the response of species in their regeneration niche to phenological and biophysical processes that are directly influenced by climate is one method for achieving this understanding. A model was developed to investigate species resilience and vulnerability to climate change within its fundamental-regeneration niche. The utility of the developed model, tree and climate assessment (TACA), was tested within the interior Douglas-fir ecosystem in south-central British Columbia. TACA modelled the current potential tree species composition of the ecosystem with high accuracy and modelled significant responses amongst tree species to climate change. The response of individual species suggests that the studied ecosystem could transition to a new ecosystem over the next 100 years. TACA showed that it can be an effective tool for identifying species resilience and vulnerability to changes in climate within the most sensitive stage of development, the regeneration phase. The TACA model was able to identify the degree of change in phenological and biophysical variables that control tree establishment, growth and persistence. The response to changes in one or more of these variables resulted in changes in the climatic suitability of the ecosystem for species and enabled a measure of vulnerability to be quantified. TACA could be useful to forest managers as a decision support tool for adaptation actions and by researchers interested in modelling stand dynamics under climate change.  相似文献   

2.
Land‐use change is the largest proximate threat to biodiversity yet remains one of the most complex to manage. In British Columbia (BC), where large mammals roam extensive tracts of intact habitat, continued land‐use development is of global concern. Extant mammal diversity in BC is unrivalled in North America owing, in part, to its unique position at the intersection of alpine, boreal, and temperate biomes. Despite high conservation values, understanding of cumulative ecological impacts from human development is limited. Using cumulative‐effects‐assessment (CEA) methods, we assessed the current human footprint over 16 regional ecosystems and 7 large mammal species. Using historical and current range estimates of the mammals, we investigated impacts of human land use on species’ persistence. For ecosystems, we found that bunchgrass, coastal Douglas fir, and ponderosa pine have been subjected to over 50% land‐use conversion, and over 85% of their spatial extent has undergone either direct or estimated indirect impacts. Of the mammals we considered, wolves were the least affected by land conversion, yet all species had reduced ranges compared with historical estimates. We found evidence of a hard trade‐off between development and conservation, most clearly for mammals with large distributions and ecosystems with high levels of conversion. Rather than serve as a platform to monitor species decline, we strongly advocate these data be used to inform land‐use planning and to assess current conservation efforts. More generally, CEAs offer a robust tool to inform wildlife and habitat conservation at scale.  相似文献   

3.
Distributions and populations of large mammals are declining globally, leading to an increase in their extinction risk. We forecasted the distribution of extant European large mammals (17 carnivores and 10 ungulates) based on 2 Rio+20 scenarios of socioeconomic development: business as usual and reduced impact through changes in human consumption of natural resources. These scenarios are linked to scenarios of land‐use change and climate change through the spatial allocation of land conversion up to 2050. We used a hierarchical framework to forecast the extent and distribution of mammal habitat based on species’ habitat preferences (as described in the International Union for Conservation of Nature Red List database) within a suitable climatic space fitted to the species’ current geographic range. We analyzed the geographic and taxonomic variation of habitat loss for large mammals and the potential effect of the reduced impact policy on loss mitigation. Averaging across scenarios, European large mammals were predicted to lose 10% of their habitat by 2050 (25% in the worst‐case scenario). Predicted loss was much higher for species in northwestern Europe, where habitat is expected to be lost due to climate and land‐use change. Change in human consumption patterns was predicted to substantially improve the conservation of habitat for European large mammals, but not enough to reduce extinction risk if species cannot adapt locally to climate change or disperse.  相似文献   

4.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   

5.
The translocation of species into habitable locations outside of their current ranges, termed assisted migration, has been proposed as a means of saving vulnerable species from extinction as a result of climate change. We explore the use of this controversial technique using a threatened keystone species in western North America, whitebark pine (Pinus albicaulis), as a case study. Species distribution models predict that whitebark pine will be extirpated from most of its current range as temperatures rise over the next 70 years. However, the same models indicate that a large area within northwestern British Columbia, Canada, is climatically suitable for the species under current conditions and will remain so throughout the 21st century. To test the capacity of whitebark pine to establish relative to climatic and habitat features within its predicted climatic range, we planted seeds from seven populations in eight locations spanning from 600 km southeast to 800 km northwest of the northern boundary of the current species range. During the first three growing seasons, germination occurred in all locations. Nearly three times as many treated (induced maturation and broken dormancy) than untreated seeds germinated, and most treated seeds germinated a year earlier than the untreated seeds. Germination, survival, and growth were primarily influenced by seed mass, site climate conditions related to the duration of snow cover, and provenance temperature. Our experiment provides a preliminary test of models predicting the existence of climatically suitable whitebark pine habitat north of the current species ranges. More broadly, our techniques and results inform the development of scientific guidelines for assisting the migration of other species that are highly threatened by climate change. Applied case studies of this kind are critical for assessing the utility of species distribution models as conservation planning tools.  相似文献   

6.
Ecological Consequences of Recent Climate Change   总被引:47,自引:0,他引:47  
Abstract: Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5° C over the past century, and recent studies show that it is possible to detect the effects of a changing climate on ecological systems. This suggests that global change may be a current and future conservation threat. Changes in recent decades are apparent at all levels of ecological organization: population and life-history changes, shifts in geographic range, changes in species composition of communities, and changes in the structure and functioning of ecosystems. These ecological effects can be linked to recent population declines and to both local and global extinctions of species. Although it is impossible to prove that climate change is the cause of these ecological effects, these findings have important implications for conservation biology. It is no longer safe to assume that all of a species' historic range remains suitable. In drawing attention to the importance of climate change as a current threat to species, these studies emphasize the need for current conservation efforts to consider climate change in both in situ conservation and reintroduction efforts. Additional threats will emerge as climate continues to change, especially as climate interacts with other stressors such as habitat fragmentation. These studies can contribute to preparations for future challenges by providing valuable input to models and direct examples of how species respond to climate change.  相似文献   

7.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

8.
Abstract: Climate‐change scenarios project significant temperature changes for most of South America. We studied the potential impacts of predicted climate‐driven change on the distribution and conservation of 26 broad‐range birds from South America Cerrado biome (a savanna that also encompass tracts of grasslands and forests). We used 12 temperature or precipitation‐related bioclimatic variables, nine niche modeling techniques, three general circulation models, and two climate scenarios (for 2030, 2065, 2099) for each species to model distribution ranges. To reach a consensus scenario, we used an ensemble‐forecasting approach to obtain an average distribution for each species at each time interval. We estimated the range extent and shift of each species. Changes in range size varied across species and according to habitat dependency; future predicted range extent was negatively correlated with current predicted range extent in all scenarios. Evolution of range size under full or null dispersal scenarios varied among species from a 5% increase to an 80% decrease. The mean expected range shifts under null and full‐dispersal scenarios were 175 and 200 km, respectively (range 15–399 km), and the shift was usually toward southeastern Brazil. We predicted larger range contractions and longer range shifts for forest‐ and grassland‐dependent species than for savanna‐dependent birds. A negative correlation between current range extent and predicted range loss revealed that geographically restricted species may face stronger threat and become even rarer. The predicted southeasterly direction of range changes is cause for concern because ranges are predicted to shift to the most developed and populated region of Brazil. Also, southeastern Brazil is the least likely region to contain significant dispersal corridors, to allow expansion of Cerrado vegetation types, or to accommodate creation of new reserves.  相似文献   

9.
Abstract:  Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.  相似文献   

10.
Biotic responses to future changes in global climate are difficult to project for a particular region because the responses involve processes that operate at many spatial scales. This difficulty is exacerbated in mountainous regions, where future vegetation changes are often portrayed as simple upward displacements of vegetation zones in response to warming. We examine the scope of future responses that may occur in a mountainous area by illustrating the potential distributions of selected tree taxa in the region of Yellowstone National Park. The output of a coarse-resolution climate model that incorporated a doubling of carbon dioxide concentration in the atmosphere was interpolated onto a 5-minute grid of topographically adjusted climate data. The output was also used as input into statistical relationships between the occurrence of individual taxa and climate. The simulated vegetation changes include a combination of elevational and directional range adjustments. The range of high-elevation species decreases, and some species become regionally extirpated. The new communities have no analogue in the present-day vegetation because they mix low-elevation montane species currently in the region with extralocal species from the northern and central Rocky Mountains and Pacific Northwest. The projected climate changes within the Yellowstone region and the individualism displayed by species in their potential range adjustments are equal or greater than the changes seen in the paleoecologic record during previous warming intervals. Although the results support conservation strategies that include habitat connectivity, the magnitude of the changes may exceed the ability of species to adjust their ranges. The predicted patterns call into question the adequacy of current management objectives to cope with the scope of future changes.  相似文献   

11.
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species’ ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them.  相似文献   

12.
《Ecological modelling》2005,186(2):251-270
Bioclimatic models are widely used tools for assessing potential responses of species to climate change. One commonly used model is BIOCLIM, which summarises up to 35 climatic parameters throughout a species’ known range, and assesses the climatic suitability of habitat under current and future climate scenarios. A criticism of BIOCLIM is that the use of all 35 parameters may lead to over-fitting of the model, which in turn may result in misrepresentations of species’ potential ranges and to the loss of biological reality. In this study, we investigated how different methods of combining climatic parameters in BIOCLIM influenced predictions of the current distributions of 25 Australian butterflies species. Distributions were modeled using three previously used methods of selecting climatic parameters: (i) the full set of 35 parameters, (ii) a customised selection of the most relevant parameters for individual species based on analysing histograms produced by BIOCLIM, which show the values for each parameter at all of the focal species known locations, and (iii) a subset of 8 parameters that may generally influence the distributions of butterflies. We also modeled distributions based on random selections of parameters. Further, we assessed the extent to which parameter choice influenced predictions of the magnitude and direction of range changes under two climate change scenarios for 2020. We found that the size of predicted distributions was negatively correlated with the number of parameters incorporated in the model, with progressive addition of parameters resulting in progressively narrower potential distributions. There was also redundancy amongst some parameters; distributions produced using all 35 parameters were on average half the size of distributions produced using only 6 parameters. The selection of parameters via histogram analysis was influenced, to an extent, by the number of location records for the focal species. Further, species inhabiting different biogeographical zones may have different sets of climatic parameters limiting their distributions; hence, the appropriateness of applying the same subset of parameters to all species may be reduced under these situations. Under future climates, most species were predicted to suffer range reductions regardless of the scenario used and the method of parameter selection. Although the size of predicted distributions varied considerably depending on the method of selecting parameters, there were no significant differences in the proportional change in range size between the three methods: under the worst-case scenario, species’ distributions decrease by an average of 12.6, 11.4, and 15.7%, using all parameters, the ‘customised set’, and the ‘general set’ of parameters, respectively. However, depending on which method of selecting parameters was used, the direction of change was reversed for two species under the worst-case climate change scenario, and for six species under the best-case scenario (out of a total of 25 species). These results suggest that when averaged over multiple species, the proportional loss or gain of climatically suitable habitat is relatively insensitive to the number of parameters used to predict distributions with BIOCLIM. However, when measuring the response of specific species or the actual size of distributions, the number of parameters is likely to be critical.  相似文献   

13.
Climate‐change vulnerability assessments (CCVAs) are valuable tools for assessing species’ vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species’ vulnerability to climate change.  相似文献   

14.
Ecosystem models play an important role in supporting ecosystem approaches to management. To improve the representation of how ecosystems work, ecosystem models should be able to represent mediating effects (e.g., habitat provision) that species provide to each other as well as species (re)introductions, both common situations that can strongly influence ecosystem dynamics. We examine how such processes can be incorporated into Ecopath with Ecosim (EwE), a widely used tool for represent aquatic ecosystems with the potential to support ecosystem-based management. We used the reintroduction of sea otters (Enhydralutris) to the west coast of Vancouver Island, British Columbia, Canada as a case study. The model demonstrates how to account for benefits provided by kelp forests by contributing to primary production, increased feeding areas and food availability through prey retention. It also demonstrates how the reintroduction and range expansion of sea otters can be represented in Ecospace, and the implications of these options.  相似文献   

15.
As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species’ establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima  相似文献   

16.
Wright JW  Davies KF  Lau JA  McCall AC  McKay JK 《Ecology》2006,87(10):2433-2439
The current range of ecological habitats occupied by a species reflects a combination of the ecological tolerance of the species, dispersal limitation, and competition. Whether the current distribution of a species accurately reflects its niche has important consequences for the role of ecological niche modeling in predicting changes in species ranges as the result of biological invasions and climate change. We employed a detailed data set of species occurrence and spatial variation in biotic and abiotic attributes to model the niche of a native California annual plant, Collinsia sparsiflora. We tested the robustness of our model for both the realized and fundamental niche by planting seeds collected from four populations, representing two ecotypes, into plots that fully represented the five-dimensional niche space described by our model. The model successfully predicted which habitats allowed for C. sparsiflora persistence, but only for one of the two source ecotypes. Our results show that substantial niche divergence has occurred in our sample of four study populations, illustrating the importance of adequately sampling and describing within-species variation in niche modeling.  相似文献   

17.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   

18.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

19.
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.  相似文献   

20.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号