首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambient concentrations of urea in the inner Oslofjord, Norway, showed a pronounced yearly cycle in 1980, with values in the range 0.1 to 10.0 μg-at N l-1; this cycle resemble that of ammonia although urea concentrations were usually lower. The uptake of urea by phytoplankton was investigated using 15N. Urea was usually a less important N source than NH 4 + , and accounted for 0 to 53% (mean 19%) of summed NH 4 + +NO 3 - + urea uptake rates from April to October. Absolute as well as relative (specific) uptake rates of urea were higher in the summer (June–August) than at other times. Uptake of urea was inhibited by NH 4 + concentrations higher than 1 to 2 μg-at N l-1. The summed NH 4 + +NO 3 - + urea uptake rate was exponentially related to temperature.  相似文献   

2.
Based on a series of short-term incubations involving the marine diatom Chaetoceros simplex (Bbsm), precultured in NH 4 + -, NO 3 - -and urea-limited continuous cultures at several dilution rates, we found that both the short-term specific rate of 14CO2 uptake and the amount of CO2 fixed after 8- and 16-min incubations were unaffected by enrichment with NH 4 + , urea, or NO 3 - when NH 4 + or urea were the preconditioning forms of N, but were slightly suppressed when the cells were first grown on NO 3 - . Similar enrichments in the dark, however, led to significant CO2 uptake under all conditions of NH 4 + enrichment and to similarly enhanced CO2 uptake, but only at high growth rates, when urea was the source of enrichment nitrogen. Our light results are contrary to some contemporary findings, but there does seem to be agreement that photosynthetic rates of rapidly growing phytoplankton will not be affected by exposure to pulses of nitrogen. Enhanced dark uptake, in contrast, appears to be characteristic of phytoplankton under all degrees of N limitation, and, as such, may be useful as an “all or nothing” index of the nitrogen status of natural waters. There is some indication that the index may be useful in determining both the form of and the degree of N limitation as well.  相似文献   

3.
NH 4 + is typically an inhibitor to hydrogen production from organic wastewater by photo-bacteria. In this experiment, biohydrogen generation with wild-type anoxygenic phototrophic bacterium Rhodobacter sphaeroideswas found to be sensitive to NH 4 + due to the significant inhibition of NH 4 + to its nitrogenase. In order to avoid the inhibition of NH 4 + to biohydrogen generation by R. sphaeroides, a glutamine auxotrophic mutant R. sphaeroides AR-3 was obtained by mutagenizing with ethyl methane sulfonate. The AR-3 mutant could generate biohydrogen efficiently in the hydrogen production medium with a higher NH 4 + concentration, because the inhibition of NH 4 + to nitrogenase of AR-3 was released. Under suitable conditions, AR-3 effectively produced biohydrogen from tofu wastewater, which normally contains 50–60 mg/L NH 4 + , with an average generation rate of 14.2 mL/L·h. This generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides.  相似文献   

4.
Field studies of whole natural phytoplankton communities from Knight Inlet, B. C., Canada and laboratory cultures of the diatom Skeletonema costatum indicate inorganic carbon fixation may be temporarily suppressed following 10 to 15% enrichment with NO 3 - or NH 4 + . (This effect is suggested to be due to competition between inorganic carbon and nitrogen for adenosine triphosphate (ATP), and is reduced when chlorophyll a is increased intracellularly after 6 to 8 h.) Results imply that the source of ATP for nitrate uptake is primarily from Photosystem I (cyclic photophosphorylation) in the presence of light. It would appear that a transient nutrient-adaptive response occurs upon addition of extracellular nitrogen.  相似文献   

5.
We examined the impact of exposing natural populations of marine bacteria (from seawater collected near Woods Hole, Massachusetts, USA) to multiple nitrogen and carbon sources in a series of batch growth experiments conducted from 1989 through 1990. The substrate C:N ratio (C:Ns) was varied from 1.5:1 to 10:1 either with equal amounts of NH 4 + and different amino acids or an amino acid mixture, all supplemented with glucose to maintain the C:Ns ratio equal to that of the respective amino acid, or with combinations of glucose and NH 4 + alone. A common feature of the experiments involving amino acids was the concurrent uptake of NH 4 + and amino acids that persisted as long as a readily assimilable carbon source (glucose in our case) was taken up. There was no net regeneration of NH 4 + , even though catabolism of amino acids occurred. Regeneration of NH 4 + was evident only after glucose was completely utilized, which usually occurred at the end of exponential growth. The contribution of15NH 4 + to total nitrogen uptake by the end of exponential growth varied from ~60 to 80% when individual amino acids were present and down to ~24% when the amino acid mixture was added. These estimates are conservative because we did not account for possible isotope dilution effects resulting from amino acid catabolism. When NH 4 + and glucose were the sole nitrogen and carbon sources, there was a stoichiometric balance between glucose and NH 4 + uptake over a wide range of C:Ns ratios, leading to a constant bacterial biomass C:N ratio (C:NB) of ~4.5:1. As a result NH 4 + usage varied from 50% when the C:Ns ratio was 3.6:1, to 100% when the C:Ns ratio was 10:1. Gross growth efficiency varied from ~60% when NH 4 + plus glucose were added alone or with the amino acid mixture, to 47% when the individual amino acids were used in place of the mixture. It is thus evident that actively growing bacteria will act as sinks for nitrogen when a carbon source that can be assimilated easily is available to balance NH 4 + uptake, even when amino acids are available and are being co-metabolized.  相似文献   

6.
In this study, we collected particles with aerodynamic diameter ?2.5 μm (PM2.5) from three different public indoor places (a supermarket, a commercial office, and a university dining hall) in Jinan, a medium-sized city located in northern China. Water-soluble inorganic ions of PM2.5 and particle size distributions were also measured. Both indoor and outdoor PM2.5 levels (102.3–143.8 μg·m?3 and 160.2–301.3 μg·m?3, respectively) were substantially higher than the value recommended by the World Health Organization (25 μg·m?3), and outdoor sources were found to be the major contributors to indoor pollutants. Diurnal particle number size distributions were different, while the maximum volume concentrations all appeared to be approximately 300 nm in the three indoor locations. Concentrations of indoor and outdoor PM2.5 were shown to exhibit the same variation trends for the supermarket and dining hall. For the office, PM2.5 concentrations during nighttime were observed to decrease sharply. Among others, SO 4 2? , NH 4 + and NO 3 ? were found to be the dominant water-soluble ions of both indoor and outdoor particles. Concentrations of NO 3 ? in the supermarket and office during the daytime were observed to decrease sharply, which might be attributed to the fact that the indoor temperature was much higher than the outdoor temperature. In addition, domestic activities such as cleaning, water usage, cooking, and smoking also played roles in degraded indoor air quality. However, the results obtained here might be negatively impacted by the small number of samples and short sampling durations.  相似文献   

7.
Laboratory 45Ca-incorporation rates in hermatypic coral skeletons have previously been used successfully as an index of physiological function. This laboratory method would become more meanigful if it also provided an absolute measure of coral growth rates. In two coral species, Porites compressa and Pocillopora damicornis, 45Ca incorporation rates were obtained from short (0.5 h) laboratory incubations using apical (determined as fast growing) portions of freshly collected coral branches. 45Ca exchange across the coenosarc was not significant and not corrected for, whereas diurnal fluctuation in 45Ca in Pocillopora damicornis was significant and a necessary correction. A calculated surface area is used to express calcification rate. Typical growth rates calculated from the 45Ca-incorporation rates were 20 and 6 mm/year for Porites compressa and Pocillopora damicornis, respectively. These rates are considerably higher than those previously obtained in the laboratory, and compare favorably with field growth rates — 24 and 14 mm/year, respectively.  相似文献   

8.
The stability of H+, NH 4 + , and PO 4 3? ions in rainwater samples was in vestigated under different conditions cf storage and transport. Microbiological and physicochemical processes account for changes. Suppression of microbiological activities in deposition networks using conventional analyses may be achieved by adding AgCl-powder and by cooling to +4 °C.  相似文献   

9.
Activated sludge was monthly sampled from a saline sewage treatment plant of Hong Kong (China) during June 2007 to May 2008 to analyze the microbial community shift along with environmental variations using denaturing gradient gel electrophoresis of polymerase chain reaction amplified 16S rDNA fragments. Environmental changes resulted into a seasonal microbial community shift characterized by alterations in species number and abundance in the sewage treatment plant. Correspondence analysis and cluster analysis on community structure profile showed that the 12 monthly samples fell into four groups, which is in accordance with season changing in Hong Kong. Canonical correspondence analysis revealed that PO 4 3t- -P and NH 4 + -N posed more significant effects on community structure than total phosphorus and total nitrogen, respectively. Compared with sludge retention time, influent total phosphorus had an inverse effect on the community structure shift, and chemical oxygen demand and NH 4 + -N showed a similar effects. Results of this study may contribute to the development of new knowledge involving the microbial community shift in sewage treatment plants.  相似文献   

10.

Goal and Scope

The goal of this study is the investigation and the grafic presentation of the characteristic redox zonation in a mineral oil contaminated aquifer which will be formed in the plume downstream of the contamination source. Methanogenic conditions, sulfate-reduction, Fe(III)-reduction, Mn(IV)-reduction, nitrate-reduction, aerobic conditions. By that indications type and degree of microbial degradation which is the most important part in Natural Attenuation (NA) processes can be obtained easily.

Methods

Changes of the groundwater parameters Eh, O2, NO 3 ? , SO4 2?, Fe2+, Mn2+, HCO3 ?, Ca2+ will be measured upstream, downstream and also in the centre of the plume. The results will be presented in a sequence of special diagrams.

Results and Conclusion

When microbial degradation of hydrocarbons takes place, a microbial community will always use that electron acceptor from which it will gain a maximum of energy by the corresponding redox-reactions. This means as long as oxygen is available this will be used. After its depletion nitrate serves as electron acceptor leading via nitrite to the formation of nitrogen or ammonia. Manganese (IV) and Iron (III) species which are rather insoluble are mainly available from the soil-phase, can act as electron acceptor as next, leading to soluble Manganese (II) and Iron (II) compounds in groundwater. Finally before methanogenic conditions occur sulphate will become a suitable electron acceptor leading to the formation of hydrogen sulphide. All these processes of mineralization of the hydrocarbons will lead to the production of CO2 and as consequence to an increase of HCO3 ? in groundwater changing the calcareous/carbonic acid-equilibrium. By that more soluble Ca(HCO3)2 is formed from insoluble CaCO3, so the concentration from Ca2+ will also inerease. Thus, by the action of microorganisms, a typical redox-zonation and changes of other parameters will occur.

Recommendations and Perspective

To follow the changes in time and space of some characteristic groundwater parameters is a simple way to estimate the potential of microbial degradation in a contaminated aquifer considering Natural Attenuation (NA)-processes.  相似文献   

11.
In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH 4 + - N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH 4 + - N and organic matter were pH 7.5>pH 8.5>pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and comparison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.  相似文献   

12.
13.
The seasonal variation in biogenic fluxes of NH4 +, PO4 3? and SiO2 calculated from the nutrient excretion rates of dominant bivalves (Ruditapes philippinarum and Arcuatula [=Musculista] senhousia), and pore-water nutrient (NH4 +, PO4 3?, SiO2 and NO3 ? + NO2 ?), sedimentary acid-volatile sulfide (AVS) and benthic chlorophyll-a (Chl-a) concentrations was assessed on an intertidal sandflat in the Seto Inland Sea (Japan) from summer 1994 to autumn 1995. In spite of the large variability between sampling dates and stations, significant correlations between biogenic nutrient fluxes and pore-water nutrient concentrations were found, suggesting a seasonal linkage between bivalve-mediated biological processes and chemical features of sediments. This linkage was stronger in surface (0–0.5 cm) than subsurface (0.5–2 cm) sediments, consistent with the autoecological characteristics of R. philippinarum and A. senhousia inhabiting the uppermost sediment layer. Significant temporal variation in pore-water NO3 ? + NO2 ?, sedimentary AVS and benthic Chl-a concentrations was also found, which was related to both occasional extreme events (e.g., dystrophy) and alternating periods of production and decomposition. This study may serve twofold in (1) contributing to unravel the ecological structure and functioning of natural tidal flats, and the scale of seasonal variability in biotic and sedimentary parameters and (2) providing useful information for assessing the effectiveness of the physico-chemical and biological structure of artificial tidal flats which are growing in number and extension worldwide.  相似文献   

14.
Calcification, photosynthesis and respiration of the scleractinian coral Astrangia danae were calculated from the changes in total alkalinity, pH, calculated total CO2, and oxygen concentration produced by colonies incubated in glass jars. A correction for changes in ammonia, nitrate and nitrite was taken into account and the method evaluated. The fluxes of oxygen and CO2 were highly correlated (r=0.99). The statistical error of alkalinity determinations was less than 10% of the changes observed in the slowest calcifying samples. Metabolism of polyparium alone was estimated by difference after removal of tissue and reincubation of bare corallum. Zooxanthellae concentration in the polyps was obtained from cell counts made on homogenates of polyp tissue. The calculated photosynthetic rate of the zooxanthellae in vivo was 25 mol O2 (108 cell)-1 h-1 at a light intensity of 120 Ein m-2 s-1. In corals having 0.5x109 zooxanthellae/dm2 of colony area up to 8% of the total photosynthesis was attributed to the corallum microcosm. Polyp respiration, photosynthesis, and CaCO3 uptake rates were all much higher than rates previously reported from A. danae, apparently because in these experiments the organisms were better fed. This increased photosynthesis in turn enhanced calcification still further. The symbiosis therefore appears to provide a growth advantage even to fed corals, under the conditions of these experiments.  相似文献   

15.
The site of reef-coral calcification has been studied in the branching coral Pocillopora damicornis Lamarck. Electron microscopy and X-ray microprobe analysis were performed on the calicoblast epidermis of newly settled larval stages and of adult coral. During settling, the heterogeneous columnar cell composition of the planktonic larva epidermis is replaced by a simple epithelium consisting of a single cell type, the calicoblast cell. Metamorphosis appears tightly linked to settling, with cell changes occurring within hours after attachment, and is marked by the appearance of a new secretory cell. The calicoblast cell of the adult coral is extremely flattened, and interdigitates extensively with adjacent calicoblast cells. This cell possesses a featureless plasma membrane lacking microvilli or flagella. It characteristically contains large membrane-bound vesicles with homogeneously fine granular contents. Preliminary microprobe analysis indicated a higher calcium content in these vesicles than in surrounding tissue; however, not in concentrations suggesting calcium-carbonate precipitation. They may represent sites of organic matrix synthesis. The calicoblast epidermis is separated from the underlying coral skeleton by a narrow gap. This gap appeared devoid of substructure, either organic or inorganic. The coral soft tissues are attached to the skeleton by mesogleal attachment processes, the desmoidal processes. These consist of a complex fibrous network originating in the mesoglea, and inserting onto the skeleton via specialized attachment regions consisting of electron-opaque membranous plaques. Skeletogenesis in reef-corals probably occurs extra-cellularly, external to the calicoblast epidermis, by simple overgrowth of the skeleton.  相似文献   

16.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

17.
The carbonate radical (CO 3 ) is a photoinduced transient species occurring in surface waters. The carbonate radical can transform both natural compounds and xenobiotics. For instance, it can react with electron-rich substrates such as anilines, phenols and organic sulfur compounds. Here we used the APEX software to assess photochemical reactions, including the formation rates of transient species, based on water chemistry and depth, under summertime irradiation conditions. We found that the reaction between peroxynitrite and carbon dioxide is a potentially significant source of CO 3 in sunlit surface waters, and could account for up to 10–15 % of the total CO 3 formation. The peroxynitrite pathway to CO 3 would be most significant at pH 7–8 and would be enhanced in waters with elevated nitrate and low alkalinity. Therefore, the proposed process could add to the known photochemical sources of CO 3 in surface-water environments.  相似文献   

18.
The effect of short-time fumigation with the peroxidic photooxidants ozone, peroxyacetyl nitrate (PAN), and hydrogen peroxide (H2O2) on the gas exchange of wheat leaves was investigated. Two types of experiments are to be distinguished:
  1. Fumigation is carried out at atmospheric CO2 partial pressure (350 μbar) and the assimilation and transpiration rates are followed simultaneously.
  2. The alteration of CO2-response curves by fumigation is determined; from this, characteristic photosynthetic parameters can be calculated.
With this method, statements about the reaction of both photosynthesis as a whole and specific reaction sites within the most important photosynthetic processes are possible. Ozone in concentrations of 260–280 ppb causes a primary perturbation of the photosynthetic apparatus, whereby the carboxylation rate is affected to nearly the same extent as the electron-transport rate.PAN (120 ppb) causes a reduction in the assimilation rate, primarily due to the closing of the stomata. H2O2 affects the gas exchange only in concentrations of above 1 ppm, whereby the reduction of the assimilation rate represents an almost pure stomatal effect. All three fumigants cause an increase in the respiration rate, which may point to an activation of detoxification and repair mechanisms.  相似文献   

19.

Background

Important properties and processes of soils are influenced by their humus contents. Therefore knowledge about the humus status of soils is an important requirement for a meaningful evaluation on dynamics and risk potentials.

Aim

Based on the extensive database of the Bavarian Environment Agency typical humus content and humus storage are compiled for soils of the Bavarian and Upper Palatinate Fores. Their importance for questions on soil and environment is estimated.

Results and Discussion

The evaluation revealed rising soil organic matter with an increasing cool and moist climate on the mountains of the Bavarian and Upper Palatinate Forest. This is particularly true for the mineral soil above 600 m above sea-level, where more organic matter is stored than in the humus layer. Depending on altitude the calculated total humus stock of soils varies between 12 and 40 kg*m?2, which means medium to very high humus contents. The highest humus stock occur between 900 and 1200 m above sea-level, where intensively rooted ‘Lockerbraunerden’ are prevailing. The somewhat lower humus content in soils above 1200 m above sea-level (about 5 kg* m?2) is explained by a shallow indurated horizon, that reduce the rooting to the upper 3–5 decimetres. The even though considerable humus stock of this concrete like indurated horizon is therefore explained by infiltration. The remarkable thickness of organic layers above 1200 m above sea-level is probably not only a result of climate, but also of a difficult decomposition of the prevailing spruce litters.

Conclusions

The high contents of organic matter in the examined soil should release appreciable amounts of CO2 if there will be a change in climate. Furthermore a decomposition of humus may considerably worsen the supply with water and nutrients on these sites.  相似文献   

20.
Abnormal processes of calcification, such as regenerating lesions and neoplasia, situated near the tips(<25 cm) of colonies of Acropora palmata (Lamarck) suppressed normal linear growth. Branches having neoplasia at a larger distance from the tip do not grow significantly differently from controls. This indicates a functional minimal area in terms of energy supply. Neoplasia are pure aragonite and have the same coenosteal structure as regenerative skeletal material. Regeneration of tissue as well as tissue+skeleton lesions involves the simultaneous formation of tissue and regenerative skeleton, trapping foreign material under the regenerated surface. Recovery of a damaged surface slows down with time and this may, in other coral species, result in permanent lesions. A. palmata recovered from all lesions (n=32) within 80 d and appears to be a superior regenerator among Caribbean corals. This is consistent with other life-history characteristics of this highly specialized coral species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号