首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The largest African Great Lakes, Tanganyika, Malawi, and Victoria, which have the richest lacustrine fish faunas of any of the world's lakes, provide a unique comparative series for studies of evolutionary mechanisms, community ecology, and fish behavior. Their colorful littoral fishes are also known to aquarists worldwide. This paper examines the origins of their fish diversity, looking at the history of the lakes, colonization from river systems, and evolution of endemic faunas within each lake. All three lakes support fisheries of great socioeconomic importance for the rapidly rising human populations. The paper also examines the vulnerability of the faunas to fishing pressures and introductions of exotic species. In Malawi and Victoria, bottom-trawling has altered the cichlid species composition. The loss of an estimated 200 taxa of endemic cichlid species from Lake Victoria's fauna, following introductions of exotic fishes (tilapias and predatory centropomid Lates ) 40 years ago, stresses the need to protect the unique fish faunas in Lakes Tanganyika and Malawi.  相似文献   

2.
Benthic habitats are known to influence the abundance and richness of demersal fish assemblages; however, little is known about how habitat structure and composition influences these distributions at very fine scales. We examined how the benthic environment structures marine fish assemblages using high-resolution bathymetry and accurate predicted benthic habitat maps. Areas characterised by a mosaic of habitat patches supported the highest richness of demersal fishes. A total of 37.4% of the variation in the distribution of the fish assemblage was attributed to 6 significant variables. Depth explained 23.0% of the variation, with the boulders explaining 12.6% and relief 1.4%. The remaining measures (seawhips, light/exposure and solid reef) provided a small (<1.0%) but significant contribution. Identifying components of the benthic environment important in structuring fish assemblages and understanding how they influence the spatial distribution of marine fishes is imperative for better management of demersal fish populations.  相似文献   

3.
Parasitism and ecological relationships among deep-sea benthic fishes   总被引:4,自引:0,他引:4  
We have studied the metazoan parasite fauna of 52 species of deep-living benthic fishes from depths of 53 to 5000m off the New York Bight (39–49°N; 70–72°W). 17144 parasites were recovered from 1712 fishes. The infestation rate was 80%, with an average of 12.5 worms per host. Percentage occurrence by group among all fishes was Monogenea 12.9%, Digenea 48%, Cestoda 22.1%, Nematoda 54.5%, Acanthocephala 3.8%, and Copepoda 4.5%. Differing composition of the parasite fauna in different fish species reflects differences in diet. Specialized feeders are rather distinct; generalized feeders, which predominate, show overlaps in parasite fauna. In individual species, changes in diet with growth are reflected in changes in the parasite fauna. Infestation rate is directly related to abundance of the free-living fauna; hence, fish from within the submarine canyon are more heavily infested than those living without. Although it contains fewer families and genera than shallow faunas, the deep-sea parasite fauna is not extremely unusual in terms of its abundance, diversity, or host specificity. At the greatest depths, parasite abundance and diversity dramatically decline.  相似文献   

4.
Repeated sampling of deep-sea bottom-living fishes was conducted at two stations in the Rockall Trough at depths of 2 200 and 2 900 m. The 2 200 m station (M) was sampled 16 times by an Agassiz trawl between April 1978 and April 1985 and yielded 473 fish belonging to 17 species. The 2 900 m permanent station (PS) yielded 781 fish belonging to 11 species from 9 Agassiz trawls, 2 small box otter trawls, 4 semi-balloon otter trawls and 7 epibenthic sledges between March 1975 and April 1985. Macrourid fishes were numerically dominant at both stations with Coryphaenoides guentheri and Coryphaenoides (Nematonurus) armatus being the most abundant species at M and PS, respectively. In terms of biomass the morid, Antimora rostrata, was dominant at M but C. (N.) armatus was dominant at PS. The only species that showed clear evidence of a seasonal reproductive cycle was C. guentheri. Many species showed no indication of reproducing in the Rockall Trough. The diets of almost all the species are described and considered in relation to the food resources exploited. Investigations on the pelagic and benthic invertebrate faunas at these stations should reveal the extent to which the bottom-living fishes exploit the available resources.  相似文献   

5.
The aim of this study was to determine whether the composition of the demersal fish fauna in coastal marine waters in temperate Australia changes markedly with increasing water depth and distance from the shore and whether the composition of the fish fauna in water depths of 5 to 35 m undergoes cyclic, seasonal changes. Samples of demersal fishes were therefore collected by trawling over the predominantly sandy substrate at nine sites located in water depths of 5 to 15 m or 20 to 35 m and within 20 km of the shore in four regions along ∼200 km on the lower west coast of Australia. The sampling regime involved trawling for fishes at each site at night in seven consecutive seasons between the summer of 1990/1991 and winter of 1992. A total of 72 435 fishes, representing 77 families, 143 genera and 172 species was caught. The compositions of the fish faunas in offshore waters with depths of 5 to 35 m were shown to differ markedly from those previously recorded for nearshore marine waters in the same regions. However, as some species, such as Sillago burrus, S. vittata, S. bassensis and Rhabdosargus sarba, increase in size, they move out from their nursery areas in nearshore waters into deeper and more offshore waters, where spawning occurs. Ordination showed that, in each of the four regions, the composition of the fish fauna in depths of 5 to 15 m differs from that in depths of 20 to 35 m. This difference is attributable to the fact that some species, such as  S. burrus, S. vittata and Upeneichthys lineatus, are far more abundant in depths of 5 to 15 m, whereas other species, such as S. robusta, U. stotti and Lepidotrigla modesta, occur predominantly in depths of 20 to 35 m. However, the samples collected from the single site that was inshore but in deeper water demonstrate that the composition of the fish fauna is influenced by distance from shore as well as by water depth. The compositions of the fish faunas differed with latitude, largely due to the fact that some subtropical species, such as Polyspina piosae, S. burrus and  S. robusta, did not extend down into the more southern regions. Ordination also showed that the composition of the fish faunas at all but one of the nine sites underwent pronounced and consistent cyclic, seasonal changes. This seasonal cyclicity at the different sites was attributable to sequential patterns of immigrations and emigrations by a number of fish species during the course of the year. These seasonal migrations involved, inter alia (1) movements of certain species from their nursery areas into these deeper waters, e.g.  S. bassensis and Scobinichthys granulatus; (2) migrations into and off the sandy areas of the inner continental shelf, e.g. Arnoglossus muelleri; (3) migrations to spawning areas, e.g. Sillago robusta; and (4) movements into areas where detached macrophytes accumulate in winter, e.g. Cnidoglanis macrocephalus and Apogon rueppellii. Received: 21 August 1998 / Accepted: 9 February 1999  相似文献   

6.
Abstract: Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one‐quarter to one‐third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea‐dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity‐based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.  相似文献   

7.
Diets of the demersal fishes on the shelf off Iwate,northern Japan   总被引:2,自引:0,他引:2  
Diets of demersal fishes were determined on the shelf (ca. 130 m deep) off Iwate, Japan. Samples were taken in three different types of habitat, an artificial reef (AR) site, a natural reef (NR) site, and sandymud bottom (SB) site, from May 1987 to September 1991, mostly every two months. A total of 67 prey items were recognized in the stomachs of 45 predator fish species. The most important preys were the pelagic fishes Sardinops melanostictus and Engraulis japonicus, which comprised 37% wet wt of the overall stomach contents. The percentage of pelagic fishes was highest at AR site, where fish density was highest. The dominant ten species could be divided into five feeding types. The pelagic fish feeders Physiculus maximowiczi and Gadus macrocephalus fed mainly on S. melanostictus. The dietary breadth of P. maximowiczi was wide, while that of Gadus macrocephalus was narrow. The pelagic crustacean feeder Theragra chalcogramma mostly consumed Themisto japonica and euphausiids and showed the least dietary overlap with other fishes. Benthic fish feeders were Hemitripterus villosus and Liparis tanakai. The benthic crustacean feeders Alcichthys alcicornis and Hexagrammos otakii consumed benthic crustaceans as well as pelagic and benthic fishes and showed the largest dietary breadth. The benthic invertebrate feeders Gymnocanthus intermedius, Dexistes rikuzenius and Tanakius kitaharai fed mainly on polychaetes and benthic crustaceans. But Gymnocanthus intermedius consumed a significant proportion of pelagic fishes. Ontogenetic dietary shift was recognized for these fishes. Pelagic fishes were consumed more intensively by larger individuals, especially true of A. alcicornis, Theragra chalcogramma and Gadus macrocephalus. Predominancy of the two most adundant species, P. maximowiczi and A. alcicornis, may be supported by their wide dietary breadth and the significant proportion of pelagic fish in their diets. Interspecific dietary overlap was low in most cases suggesting that food resources were well partitioned, although some high overlap was observed among the pelagic fish feeders, A. alcicornis, and Gymnocanthus intermedius, and among the benthic invertebrate feeders. Interspecific competition seemed more likely in the benthic invertebrate feeders than in the pelagic fish feeders partly because of superabundance of the pelagic prey S. melanostictus.  相似文献   

8.
The rocky littoral areas of Lake Tanganyika harbor diverse fish communities, mainly composed of cichlids. Their stability, structure, and organizing mechanism were examined at three locations by census, behavioral observations, and dietary analyses. These fish communities were stable, characterized by their persistence during a 10-year period and resilience after a perturbation. Partitioning of spawning sites among substrate spawners was evident, which might be a factor in their ability to coexist. The fish communities were consistently composed of 12 food-habit groups, but composition of species in each group differed from location to location. Among species of different food-habit groups, facultative commensalisms were prevalent. Although aggressive interactions are common among fishes of the same food-habit group, each predatory fish obtained an advantage in feeding efficiency from the different feeding behaviors of other species of the same group. This mutualism and the facultative commensalism should both increase species richness in different parts of the communities. These intricate interactions among species may be a base of stability of the fish communities. We assert that maintenance of ecological networks among species are most important for conservation of biodiversity in tropical regions.  相似文献   

9.
Mesopelagic fish species are not uniformly distributed throughout the tropical and subtropical Pacific Ocean. There are reasonably clear-cut faunal assemblages with characteristics species. The geographic ranges of the assemblages conform to those patterns shown by zooplankton. As part of a 5 yr (August 1969-March 1974), seven-cruise, ecological study, replicate sampling in central gyral waters included additional quantitative sampling at a point along the equator at 155°W to compare species composition and structure at this location with points in the central gyres. These comparisons show that the distribution of individuals among species displays similar structure in all three areas, but species composition and the relative abundances of shared species differ. There are species restricted to the low-productivity central gyres, and subgroups of these are restricted to specific gyres. The gyral faunas differ markedly from the high-productivity species assemblage found along the equator. With the exception of the eastern tropical Pacific, where low oxygen concentrations probably limit species distributions, the primary productivity regime is the most likely factor defining the distributions of most mesopelagic fishes in the tropical and subtropical Pacific. The mechanisms for the maintenance of these geographic patterns are not clear, but the correlation of the patterns with the productivity regime leads one to hypothesize that the ultimate factor is food.  相似文献   

10.
Stomach contents and intestinal parasite faunas of 471 individuals of demersal fishes in 14 species were examined from the Carson Canyon region (Lat. 45°30N; Long. 48°40W) of the upper continental slope of the Grand Banks off Newfoundland, Canada. Individual species tended to feed either on benthic or on pelagic/benthopelagic organisms, but pelagic prey assumed the greatest importance overall. Data from stomach contents were supported by the parasite information. Prevalence of parasites was higher in benthic feeders (53.1%) than in pelagic feeders (28.9%), and relative abundance by major group was: Digenetic Trematoda 5.8% benthic vs 27.8% pelagic, Nematoda 53.1% vs 72.2%, and Acanthocephala 40.9% vs 0%. Of the dominant fishes, there were more species of benthic feeders (5) than pelagic feeders (3), but pelagic feeders were numerically more abundant (pelagic 70.9%, benthic 20.5%). Benthic feeders were on average larger (=270.6g) than pelagic ones (=130.6g), but pelagic feeders represented a larger proportion of the biomass (pelagic 43.3%, benthic 25.9%). The results of this study combined with those from other areas suggest that feeding from the pelagial by demersal fishes at upper continental slope depths is probably the general rule.  相似文献   

11.
Pacifastacus leniusculus (Dana), a native crayfish of western North America, was introduced into the U.K. in 1976. Our study examined some interactions between P. leniusculus and benthic fish in a British lowland river, the River Great Ouse. In a river survey an inverse correlation was found between the abundance of crayfish and the two dominant benthic fishes, bullhead (Cottus gobio L.) and stone loach (   Noemacheilus barbatulus [L.]) in six riffles. The benthic fishes were least abundant in the riffle nearest the original site of crayfish introduction and gradually increased in abundance both up and down river as crayfish abundance decreased. The hypotheses that crayfish compete with bullheads and stone loach for shelter and prey on fish were tested by laboratory experiments in an outdoor artificial stream (6 × 2 m) with recirculating water and 12 artificial shelters on the bottom. In competition experiments 12 fish of one species were alternatively kept alone and with 12 crayfish for 3-day cycles lasting a total of 12 days. The results showed that crayfish out-competed both fish species for shelter. Predation was measured by keeping 24 fish of each species alone and with 36 crayfish for 10 days respectively in the artificial stream. The mortalities of both fish species were significantly higher when crayfish were present. The loss of fish could be partly due to predation because crayfish guts contained the remains of some lost fish and they were observed preying on both fishes in a tank. In the river crayfish lived at high densities reaching ≥ to 20 m−2 in riffles, and they continued to disperse. This may lead to a great reduction in benthic fish abundance if not local extinctions.  相似文献   

12.
Monthly trawl surveys were performed in 1989 in North Bay and South Bay of St Vincent (New Caledonia) with both a shrimp trawl and fish trawl to produce a reference standard of the natural variability of an unexploited tropical soft-bottom fish assemblage. A total of 230 species belonging to 62 families were recorded. The mean density and biomass were 0.18 fishes m-2 and 4.31 g m-2, respectively. The major variations were explained by spatial factors. Species richness, density and biomass were greater in South Bay (204 species, 0.26 fishes m-2 and 5.90 g m-2) than in North Bay (105 species, 0.10 fishes m-2 and 2.71 g m-2), 34% of the species being present in both areas. The North Bay assemblage was characterized by four abundant benthic species (Saurida undosquamis, Gerres ovatus, Secutor ruconius and Upeneus moluccensis) and by numerous pelagic species (Carangidae, Sphyraenidae and Scombridae). The South Bay assemblage was characterized by several Mullidae, Bothidae and Balistidae, and by some rare species usually found on coral reefs (Pomacentridae and Chaetodontidae). These differences were induced by the physical and benthic characteristics of the two bays. North Bay was an homogeneous, confined, deposit area with few benthic organisms, whereas the substrate was more heterogeneous and the benthic organisms more diversified and abundant in South Bay, which was connected to the adjacent reef lagoon. Species richness remained stable in time, except in January when a hurricane disturbed the environment. Seasonal tendencies in species composition were evidenced in North Bay, with an autumn-winter structure opposed to a spring-summer structure, and characterized by the relative importance of the major species. No seasonal tendencies were observed in the organization of the South Bay assemblage. Nevertheless, mean density and biomass were at a minimum in summer in both bays; maxima occurred in winter. Biomass was negatively correlated to both temperature and rainfall, and reflected the population variations of the main species, particularly their reproductive migrations. Thus, the soft-bottom fish assemblages were strongly organized spatially in New Caledonia, but remained relatively stable over time.  相似文献   

13.
The electrosensory capabilities of wobbegong sharks are of particular interest, partly because very little is known about their behavioural ecology and specifically because of their unusual ambush predatory strategy and benthic lifestyle. While several biological functions of electroreception have been proposed, less consideration has been given to the functional significance of interspecific differences in the morphology and topographic distribution of the ampullary organs. The morphology of the ampullary organs was examined in four species of wobbegong shark, and the distribution of electroreceptive pores was mapped in two species. The ampullary systems of wobbegongs are similar in morphology to other marine elasmobranchs. The number of alveoli per ampullae is not significantly different between the four species; however, differences are seen between ampullary cell size in some species. Ampullary pore distribution patterns are relatively unique, with the majority of pores occurring on the dorsal region of the head. Wobbegongs feed primarily on demersal teleost fishes, and as the benthic and well-camouflaged wobbegong remains motionless, these fish could be easily detected by the dorsal pores when swimming within range.  相似文献   

14.
Patterns of habitat association and foraging were examined for a group of tropical goatfishes (family Mullidae) that feed on mobile benthic invertebrates at Lizard Island (Great Barrier Reef). All goatfish possess barbels that disturb the substratum during feeding. Foraging methods were examined for the six most common species and used in conjunction with data on habitat associations to estimate the distribution and potential impact on the benthic invertebrate assemblage of foraging-related disturbance. Particular species exhibited broad habitat associations which differed little over two surveys (January 1989, January 1990). All species showed different preferences for the substrata they foraged. Preferences for substrata exhibited by the most common reef-associated species, Parupeneus multifasciatus, differed among locations separated by 1 km, between sites 150 m apart, and between depths (shallow and deep). Habitat preferences changed with ontogeny. Based on their habitat associations and foraging preferences, species were divided into habitat generalists and specialists. Specialists associated primarily with soft sediments. Habitat generalists, such as P. multifasciatus and P. cyclostomus, are likely to have an impact on their mobile invertebrate prey that is localised, diffuse and transitory, making any experimental analysis difficult and expensive. Habitat specialists form a guild of fishes with complementary feeding modes that efficiently exploit soft sediments and are more amenable to experimental manipulation. Experiments designed to detect the impact of foraging by these fishes must be repeated at different locations and times and must account for depth differences in foraging pressure.  相似文献   

15.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

16.
The aim of the study was to provide comparable estimates of abundance of herbivorous reef fishes at temperate and tropical localities using a standardized methodology. Faunas of herbivorous fish were sampled on the rocky reefs of temperate northern New Zealand and on the coral reefs of the northern Great Barrier Reef (GBR), Australia, and the San Blas Archipelago in the Caribbean. A pilot study established the most appropriate habitat setting and the scale and magnitude of replication for the sampling program in temperate waters. Herbivorous fishes, including members of families endemic to the southern hemisphere (Odacidae and Aplodactylidae), were most abundant in turbulent, shallow water (0 to 6 m) and had patchy distributions within this habitat. A hierarchical sampling program using 10-min transect counts within the 0 to 6 m depth stratum examined abundance patterns at a range of spatial scales including mainland and island coasts, localities separated by up to 100 km and sites separated by up to 10 km. This program identified a characteristic fauna of seven species of herbivorous fishes with mean total abundances ranging from 23 to 30 individuals per 10-min transect. Species composition of the fauna varied between islands and coasts. A similar methodology was used to sample the major families of herbivorous fish in a number of sites in each of the tropical regions. These sampling programs revealed a fauna dominated by acanthurids and scarids in both the GBR and Caribbean localities. Estimates of abundance from these regions were similar, with a mean of 108 individuals recorded on the GBR and 129 per 10-min transect in the Caribbean. Species richness varied between each region, with 44 taxa recorded from the GBR and 11 from the Caribbean. Abundances of temperate water herbivores in New Zealand were found to be 75 to 80% lower than those recorded from shallow water habitats sampled on coral reefs. This was not related to species richness, since both New Zealand and the Caribbean locality had patterns of low richness. We suggest that the differences in abundance found by our study between temperate and tropical regions are not restricted to herbivorous fishes, but are representative of general latitudinal trends in reef fish faunas. Received: 4 November 1996 / Accepted: 15 December 1996  相似文献   

17.
In an experimental study on the effect of parrotfish (probably Scarus taeniurus) grazing on the structure of benthic reef communities, fishes in densities of 0.6 to 1.5 parrotfish per m2 or 9 to 17 g wet weight of fish per m2 of feeding surface were found to have an optimum effect, resulting in the greatest benthic species richness and biomass on 2-dimensional surfaces. The presence of refuges (3-dimensional habitats), however, has a greater impact on bemthic community structure (number of species and biomass) than does just the density of parrotfish in such an experimental system. Coral recruitment is enhanced by the presence of refuges and, like coralline algae, is more successful under increased grazing pressure. These optimum densities of parrotfishes relate well to observed field densities where, in a collection from a Hawaiian patch reef, there were 1.1 fish or 10.8 g wet weight of parrotfish per square meter of collection area. The success of coralline algae and corals under high grazing pressure may have important consequences for the stability and structure of modern coral reefs.  相似文献   

18.
Fishes were trawled from Albatross Bay, on the west coast of Cape York, north Queensland (12°45S; 141°30E) during 4 yr, from August 1986 to April 1989. Penaeids were the first or second most important prey item by dry weight in 14 of the 34 penaeid-eating fish species, and in 12 of the species by frequency of occurrence. Eighteen species of Penaeidae were identified in fish stomachs. The five commercially important species comprised over 70% by dry weight of all the penaeids eaten by all the fishes;Metapenaeus ensis, Penaeus semisulcatus andP. merguiensis comprised 22, 28 and 11%, respectively. Commercially unimportant penaeids comprised 85% by numbers of all penaeids eaten. Larger fishes ate larger penaeids, mainly commercially important species, while smaller fishes ate smaller penaeids, mainly commercially unimportant species. All penaeid-eating fishes also ate some teleost prey and many were primarily piscivorous. Most penaeid-eating fish species took more benthic prey than bentho-pelagic and pelagic prey combined. The fishes with the strongest predation impact on commercially important penaeids wereCaranx bucculentus and four species of elasmobranchs. The highest impact on commercially unimportant penaeids was made by several species of smaller but abundant fishes. An overall annual estimate of 2950 t yr–1 of commercially important penaeids is eaten by all fishes, a much higher figure than the average 870 t yr–1 taken by the fishery. This study highlights the need for accurate measurement of the abundance of penaeid predators as well as analyses of their diets when assessing the impact of predators on prawn stocks.  相似文献   

19.
Large dams degrade the integrity of a wide variety of ecosystems, yet direct downstream effects of dams have received the most attention from ecosystem managers and researchers. We investigated indirect upstream effects of dams resulting from decimation of migratory freshwater shrimp and fish populations in Puerto Rico, USA, in both high- and low-gradient streams. In high-gradient streams above large dams, native shrimps and fishes were extremely rare, whereas similar sites without large dams had high abundances of native consumers. Losses of native fauna above dams dramatically altered their basal food resources and assemblages of invertebrate competitors and prey. Compared to pools in high-gradient streams with no large dams, pool epilithon above dams had nine times more algal biomass, 20 times more fine benthic organic matter (FBOM), 65 times more fine benthic inorganic matter (FBIM), 28 times more carbon, 19 times more nitrogen, and four times more non-decapod invertebrate biomass. High-gradient riffles upstream from large dams had five times more FBIM than did undammed riffles but showed no difference in algal abundance, FBOM, or non-decapod invertebrate biomass. For epilithon of low-gradient streams, differences in basal resources between pools above large dams vs. without large dams were considerably smaller in magnitude than those observed for pools in high-gradient sites. These results match previous stream experiments in which the strength of native shrimp and fish effects increased with stream gradient. Our results demonstrate that dams can indirectly affect upstream free-flowing reaches by eliminating strong top-down effects of consumers. Migratory omnivorous shrimps and fishes occur throughout the tropics, and the consequences of their declines upstream from many tropical dams are likely to be similar to those in Puerto Rico. Thus, ecological effects of migratory fauna loss upstream from dams encompass a wider variety of species interactions and biomes than the bottom-up effects (i.e., elimination of salmonid nutrient subsidies) recognized for northern temperate systems.  相似文献   

20.
S. Vizzini  A. Mazzola 《Marine Biology》2003,142(5):1009-1018
Stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers were investigated seasonally throughout 1999, in order to describe the food web in a western Mediterranean coastal lagoon (Lake of Sabaudia, central Italy). Particulate organic matter and algal material (seagrass epiphytes and macroalgae) seem to constitute the main food sources for primary consumers (zooplankton and small benthic invertebrates, respectively) throughout the sampling year, while the seagrass Cymodocea nodosa appears to play a negligible trophic role. As regards the ichthyofauna, carbon stable isotopes differentiated between planktivore and benthivore fish species. However, a benthic-pelagic coupling seems to occur, with some fish of higher trophic levels feeding both on benthic and pelagic materials. Analysis of variance showed that the interaction between the three main factors (species2size2season) significantly affects the isotopic composition of fish, suggesting the presence of intra- and inter-specific resource partitioning. Wide seasonal variations in the isotopic composition were observed in organic matter sources, invertebrates and fish, with a general trend towards depleted values in winter and enriched values in summer. The winter depletion of organic matter sources may be due to several environmental factors and seems to be mirrored in the upper trophic levels. Primary producers and invertebrates are known to have shorter time-integrated isotopic signatures than vertebrates, yet fish also exhibited seasonal isotopic differences. We concluded that the examined fish species can assume a new muscle isotopic signature relatively quickly in response to changes in the isotopic composition of their diet and/or diet shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号