首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  The interaction between land-use change and the sustainability of hunting is poorly understood but is critical for sustaining hunted vertebrate populations and a protein supply for the rural poor. We investigated sustainability of hunting in an Amazonian landscape mosaic, where a small human population had access to large areas of both primary and secondary forest. Harvestable production of mammals and birds was calculated from density estimates. We compared production with offtake from three villages and used catch-per-unit-effort as an independent measure of prey abundance. Most species were hunted unsustainably in primary forest, leading to local depletion of the largest primates and birds. The estimated sustainable supply of wild meat was higher for primary (39 kg · km−2· yr−1) than secondary forest (22 kg · km−2· yr−1) because four species were absent and three species at low abundance in secondary forests. Production of three disturbance-tolerant mammal species was 3 times higher in secondary than in primary forest, but hunting led to overexploitation of one species. Our data suggest that an average Amazonian smallholder would require ≥3.1 km2 of secondary regrowth to ensure a sustainable harvest of forest vertebrates. We conclude that secondary forests can sustainably provide only 2% of the required protein intake of Amazonian smallholders and are unlikely to be sufficient for sustainable hunting in other tropical forest regions.  相似文献   

2.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   

3.
Roads and the Environmental Degradation of Tropical Montane Forests   总被引:2,自引:0,他引:2  
Roads are often a causal agent in the degradation of tropical forests; in this paper their impact is discussed for the forested, humid montane zone. Because of their steep slopes and high elevations, these forests have disturbance regimes associated with slope instability, limited resilience, and numerous species that are elevational specialists, restricted to narrow altitudinal belts. Roads often augment slope instability and fragment ranges of specialized species. Roads can allow uncontrolled extraction of natural products and landscape conversion. Improvements are needed in the design, construction, and maintenance of these roads. Also needed are studies and mitigation efforts to reduce their effects on the specialized biota of montane forests.  相似文献   

4.
The Fate of Tropical Forests: a Matter of Stewardship   总被引:9,自引:0,他引:9  
  相似文献   

5.
6.
The Potential for Species Conservation in Tropical Secondary Forests   总被引:3,自引:0,他引:3  
Abstract: In the wake of widespread loss of old‐growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches, spatial and temporal landscape dynamics influence the establishment, species composition, and persistence of secondary forests. Prospects for conservation of old‐growth species in secondary forests are maximized in regions where the ratio of secondary to old‐growth forest area is relatively low, older secondary forests have persisted, anthropogenic disturbance after abandonment is relatively low, seed‐dispersing fauna are present, and old‐growth forests are close to abandoned sites. The conservation value of a secondary forest is expected to increase over time, as species arriving from remaining old‐growth forest patches accumulate. Many studies are poorly replicated, which limits robust assessments of the number and abundance of old‐growth species present in secondary forests. Older secondary forests are not often studied and few long‐term studies are conducted in secondary forests. Available data indicate that both old‐growth and second‐growth forests are important to the persistence of forest species in tropical, human‐modified landscapes.  相似文献   

7.
8.
9.
10.
Abstract: We studied plant-animal interactions and vegetation structure in two geographically close tropical Bolivian forests subjected to different hunting intensities. We hypothesized that reduction of mammals openface> 1 kg in an "intensively hunted forest," compared with an "occasionally hunted forest," should correlate with decreased seed predation and seedling trampling, increased seedling survival and density, and decreased tree-species diversity at the seedling stage in relation to the adult stage. The occasionally hunted forest held 1.7 times as many mammalian species as the intensively hunted forest. As predicted, predation of Astrocaryum murumuru seeds was 34.2% lower in the intensively hunted forest. Similarly, trampling of model seedlings was 5.4 times lower and seedling survival was 1.15 times greater in the intensively hunted forest than that in the occasionally hunted forest. But the intensively hunted forest displayed lower seedling densities and a higher ratio of seedling diversity to tree diversity than did the occasionally hunted forest. Reduction of peccaries from the intensively hunted forest may explain much of the between-site differences in seed predation, trampling, and seedling survival. Lack of consistent differences in seedling density and diversity could mean that reduced granivory and trampling may be counteracted by reduced seed dispersal. The reduction of mammalian populations may produce a complex mosaic of forest patches with distinct degrees of structural change, depending on the intensity of defaunation.  相似文献   

11.
Changing land use in the tropics has resulted in vast areas of damaged and degraded lands where biodiversity has been reduced. The majority of research on biodiversity has been focused on population and community dynamics and has rarely considered the ecosystem processes that are intimately related. We present a framework for examining the effects of changes in biodiversity on ecosystem function in natural, managed, and damaged tropical forests. Using a whole-ecosystem approach, the framework identifies key nutrient and energy cycling processes and critical junctures or pathways, termed interfaces, where resources are concentrated and transferred between the biotic and abiotic components of the ecosystem. Processes occurring at these interfaces, and the organisms or attributes participating in these processes, exert a strong influence on ecosystem structure. We use examples from Puerto Rico, Southern China, Dominica, and Nicaragua to illustrate how the functional diversity framework can be applied to critically examine the effects of changes in biodiversity on ecosystem function, and the relative success or failure of rehabilitation strategies. The few available data suggest that functional diversity, and not just species richness, is important in maintaining the integrity of nutrient and energy fluxes. High species richness, however, may increase ecosystem resiliency following disturbance by increasing the number of alternative pathways for the flow of resources. We suggest ways in which the framework of functional diversity can be used to design research to examine the effects of changes in biodiversity on ecosystem processes and in the design and evaluation of ecosystem management and land rehabilitation projects in the tropics.  相似文献   

12.
13.
Abstract: Despite growing concern, no consensus has emerged over the effects of habitat modification on species diversity in tropical forests. Even for comparatively well-studied taxa such as Lepidoptera, disturbance has been reported to increase and decrease diversity with approximately equal frequency. Species diversity within landscapes depends on the spatial scale at which communities are sampled, and the effects of disturbance in tropical forests have been studied at a wide range of spatial scales. Yet the question of how disturbance affects diversity at different spatial scales has not been addressed. We reanalyzed data from previous studies to examine the relationship between spatial scale and effects of disturbance on tropical-forest Lepidoptera. Disturbance had opposite effects on diversity at large and small scales: as scale decreased, the probability of a positive effect of disturbance on diversity increased. We also explicitly examined the relationship between spatial scale and the diversity of butterflies in selectively logged and unlogged forest in Maluku Province, Indonesia. Species richness increased with spatial scale in both logged and unlogged forest, but at a significantly faster rate in unlogged forest, whereas species evenness increased with scale in unlogged forest but did not increase with scale in logged forest. These data indicate that the effects of habitat modification on species diversity are heavily scale-dependent. As a result, recorded effects of disturbance were strongly influenced by the spatial scale at which species assemblages were sampled. Future studies need to account for this by explicitly examining the effects of disturbance at a number of different spatial scales. A further problem arises because the relationship between scale and diversity is likely to differ among taxa in relation to mobility. This may explain to some extent why the measured effects of disturbance have differed between relatively mobile and immobile taxa.  相似文献   

14.
Abstract: The growing prevalence of fragmentation and fire in tropical forests makes it imperative to quantify changes in these disturbances and to understand the ways in which they interact across the landscape. I used a multitemporal series of Landsat images to study the incidence and coincidence of fire and fragmentation in two areas of Pará state in the eastern Brazilian Amazon: Tailândia and Paragominase. In both areas, deforestation and forest fires were quantified for time series of 6–10 years. The Tailândia study area typifies a landscape with the herringbone pattern of government-settled colonists, and the Paragominas area is dominated by large cattle ranches. In both areas, over 90% of the forests affected by fire were associated with forest edges. Although most burned forest occurred within 500 m of forest edges, some fires occurred in deep forest, several kilometers from any edge. The obvious synergism between forest fragmentation and fire poses serious risks to tropical ecosystems and has important implications for land management.  相似文献   

15.
Tropical forest ecosystems are threatened by habitat conversion and other anthropogenic actions. Timber production forests can augment the conservation value of primary forest reserves, but studies of logging effects often yield contradictory findings and thus inhibit efforts to develop clear conservation strategies. We hypothesized that much of this variability reflects a common methodological flaw, simple pseudoreplication, that confounds logging effects with preexisting spatial variation. We reviewed recent studies of the effects of logging on biodiversity in tropical forests (n = 77) and found that 68% were definitively pseudoreplicated while only 7% were definitively free of pseudoreplication. The remaining proportion could not be clearly categorized. In addition, we collected compositional data on 7 taxa in 24 primary forest research plots and systematically analyzed subsets of these plots to calculate the probability that a pseudoreplicated comparison would incorrectly identify a treatment effect. Rates of false inference (i.e., the spurious detection of a treatment effect) were >0.5 for 2 taxa, 0.3–0.5 for 2 taxa, and <0.3 for 3 taxa. Our findings demonstrate that tropical conservation strategies are being informed by a body of literature that is rife with unwarranted inferences. Addressing pseudoreplication is essential for accurately assessing biodiversity in logged forests, identifying the relative merits of specific management practices and landscape configurations, and effectively balancing conservation with timber production in tropical forests. Pseudoreplicación en Bosques Tropicales y Efectos Resultantes Sobre la Conservación de Biodiversidad  相似文献   

16.
Abstract:  Human agents of landscape transformation in the tropics affect forests differently as the forests decline in size. Five agents of change—road builders, corporate concession holders, community forest managers, park advocates, and urban consumers—have different effects on large forests in remote tropical regions than they do on remnant forests in settled agricultural regions. Because forests vary so much in size across tropical regions, these differences in the effects of agents on forests have important implications for regional conservation efforts. To make these implications explicit, I compared the effects of the five agents in regions with large forests with their effects in regions with small forests. The comparisons indicated that, as forests declined in size, new roads no longer destroyed forests, corporate loggers left the forests, community forest managers became more effective, parks became less feasible as a means of conservation, and urban consumers initiated tree planting. My results suggest that awareness about the changing effects of humans on landscapes with shrinking forests can serve as a useful tool in formulating regionally appropriate policies for conserving tropical forests.  相似文献   

17.
Many Neotropical migratory species inhabit both mature and earty-successional forests on their wintering grounds, yet comparisons of survival rates between habitats are lacking. Consequently, the factors affecting habitat suitability for Neotropical migrants and the potential effects of tropical deforestation on migrants are not well understood. We estimated overwinter survival and capture probabilities of Wood Thrush ( Hylochichla mustelina ), Ovenbird ( Seiurus aurocapillus ), Hooded Warbler ( Wilsonia citrina ), and Kentucky Warbler ( Oporornis formosus ) inhabiting two common tropical habitat types, mature and early-successional forest. Our results suggest that large differences (for example, ratio of survival rates (γ) ≤ 0.85) in overwinter survival between these habitats do not exist for any of these species. Age ratios did not differ between habitats, but males were more common in forest habitats and females more common in successional habitats for Hooded Warblers and Kentucky Warblers. Future research on overwinter survival should address the need for age- and sex-specific survival estimates before we can draw strong conclusions regarding winter habitat suitability. Our estimates of overwinter survival extrapolated to annual survival rates that were generally lower than previous estimates of annual survival of migratory birds. Capture probability differed between habitats for Kentucky Warblers, but our results provide strong evidence against large differences in capture probability between habitats for Wood Thrush, Hooded Warblers, and Ovenbirds. We found no temporal or among-site differences in survival or capture probability for any of the four species. Additional research is needed to examine the effects of winter habitat use on survival during migration and between-winter survival.  相似文献   

18.
Abstract:  The management of tropical forest in timber concessions has been proposed as a solution to prevent further biodiversity loss. The effectiveness of this strategy will likely depend on species-specific, population-level responses to logging. We conducted a survey (749 line transects over 3450 km) in logging concessions (1.2 million ha) in the northern Republic of Congo to examine the impact of logging on large mammal populations, including endangered species such as the elephant ( Loxodonta africana ), gorilla ( Gorilla gorilla ), chimpanzee ( Pan troglodytes ), and bongo ( Tragelaphus eurycerus ). When we estimated species abundance without consideration of transect characteristics, species abundances in logged and unlogged forests were not different for most species. When we modeled the data with a hurdle model approach, however, analyzing species presence and conditional abundance separately with generalized additive models and then combining them to calculate the mean species abundance, species abundance varied strongly depending on transect characteristics. The mean species abundance was often related to the distance to unlogged forest, which suggests that intact forest serves as source habitat for several species. The mean species abundance responded nonlinearly to logging history, changing over 30 years as the forest recovered from logging. Finally the distance away from roads, natural forest clearings, and villages also determined the abundance of mammals. Our results suggest that logged forest can extend the conservation estate for many of Central Africa's most threatened species if managed appropriately. In addition to limiting hunting, logging concessions must be large, contain patches of unlogged forest, and include forest with different logging histories.  相似文献   

19.
20.
There is a lack of quantitative information on the effectiveness of selective‐logging practices in ameliorating effects of logging on faunal communities. We conducted a large‐scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest‐dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance‐tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance‐tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low‐intensity logging (≤3 trees/ha) a minimum 20‐year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian assemblages. Recuperación de Ensambles de Anfibios en Dos Etapas Después de la Tala Selectiva de Bosques Tropicales  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号