首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caught between ongoing habitat destruction and funding shortfalls, conservation organizations are using systematic planning approaches to identify places that offer the highest biodiversity return per dollar invested. However, available tools do not account for the landscape of funding for conservation or quantify the constraints this landscape imposes on conservation outcomes. Using state‐level data on philanthropic giving to and investments in land conservation by a large nonprofit organization, we applied linear regression to evaluate whether the spatial distribution of conservation philanthropy better explained expenditures on conservation than maps of biodiversity priorities, which were derived from a planning process internal to the organization and return on investment (ROI) analyses based on data on species richness, land costs, and existing protected areas. Philanthropic fund raising accounted for considerably more spatial variation in conservation spending (r2 = 0.64) than either of the 2 systematic conservation planning approaches (r2 = 0.08–0.21). We used results of one of the ROI analyses to evaluate whether increases in flexibility to reallocate funding across space provides conservation gains. Small but plausible “tax” increments of 1–10% on states redistributed to the optimal funding allocation from the ROI analysis could result in gains in endemic species protected of 8.5–80.2%. When such increases in spatial flexibility are not possible, conservation organizations should seek to cultivate increased support for conservation in priority locations. We used lagged correlations of giving to and spending by the organization to evaluate whether investments in habitat protection stimulate future giving to conservation. The most common outcome at the state level was that conservation spending quarters correlated significantly and positively with lagged fund raising quarters. In effect, periods of high fund raising for biodiversity followed (rather than preceded) periods of high expenditure on land conservation projects, identifying one mechanism conservation organizations could explore to seed greater activity in priority locations. Our results demonstrate how limitations on the ability of conservation organizations to reallocate their funding across space can impede organizational effectiveness and elucidate ways conservation planning tools could be more useful if they quantified and incorporated these constraints.  相似文献   

2.
To counteract global species decline, modern biodiversity conservation engages in large projects, spends billions of dollars, and includes many organizations working simultaneously within regions. To add to this complexity, the conservation sector has hierarchical structure, where conservation actions are often outsourced by funders (foundations, government, etc.) to local organizations that work on‐the‐ground. In contrast, conservation science usually assumes that a single organization makes resource allocation decisions. This discrepancy calls for theory to understand how the expected biodiversity outcomes change when interactions between organizations are accounted for. Here, we used a game theoretic model to explore how biodiversity outcomes are affected by vertical and horizontal interactions between 3 conservation organizations: a funder that outsourced its actions and 2 local conservation organizations that work on‐the‐ground. Interactions between the organizations changed the spending decisions made by individual organizations, and thereby the magnitude and direction of the conservation benefits. We showed that funders would struggle to incentivize recipient organizations with set priorities to perform desired actions, even when they control substantial amounts of the funding and employ common contracting approaches to enhance outcomes. Instead, biodiversity outcomes depended on priority alignment across the organizations. Conservation outcomes for the funder were improved by strategic interactions when organizational priorities were well aligned, but decreased when priorities were misaligned. Meanwhile, local organizations had improved outcomes regardless of alignment due to additional funding in the system. Given that conservation often involves the aggregate actions of multiple organizations with different objectives, strategic interactions between organizations need to be considered if we are to predict possible outcomes of conservation programs or costs of achieving conservation targets.  相似文献   

3.
Many of the challenges conservation professionals face can be framed as scale mismatches. The problem of scale mismatch occurs when the planning for and implementation of conservation actions is at a scale that does not reflect the scale of the conservation problem. The challenges in conservation planning related to scale mismatch include ecosystem or ecological process transcendence of governance boundaries; limited availability of fine‐resolution data; lack of operational capacity for implementation; lack of understanding of social‐ecological system components; threats to ecological diversity that operate at diverse spatial and temporal scales; mismatch between funding and the long‐term nature of ecological processes; rate of action implementation that does not reflect the rate of change of the ecological system; lack of appropriate indicators for monitoring activities; and occurrence of ecological change at scales smaller or larger than the scale of implementation or monitoring. Not recognizing and accounting for these challenges when planning for conservation can result in actions that do not address the multiscale nature of conservation problems and that do not achieve conservation objectives. Social networks link organizations and individuals across space and time and determine the scale of conservation actions; thus, an understanding of the social networks associated with conservation planning will help determine the potential for implementing conservation actions at the required scales. Social‐network analyses can be used to explore whether these networks constrain or enable key social processes and how multiple scales of action are linked. Results of network analyses can be used to mitigate scale mismatches in assessing, planning, implementing, and monitoring conservation projects. Discordancia de Escalas, Planificación de la Conservación y el Valor del Análisis de Redes Sociales  相似文献   

4.
Abstract Spatial prioritization techniques are applied in conservation‐planning initiatives to allocate conservation resources. Although typically they are based on ecological data (e.g., species, habitats, ecological processes), increasingly they also include nonecological data, mostly on the vulnerability of valued features and economic costs of implementation. Nevertheless, the effectiveness of conservation actions implemented through conservation‐planning initiatives is a function of the human and social dimensions of social‐ecological systems, such as stakeholders’ willingness and capacity to participate. We assessed human and social factors hypothesized to define opportunities for implementing effective conservation action by individual land managers (those responsible for making day‐to‐day decisions on land use) and mapped these to schedule implementation of a private land conservation program. We surveyed 48 land managers who owned 301 land parcels in the Makana Municipality of the Eastern Cape province in South Africa. Psychometric statistical and cluster analyses were applied to the interview data so as to map human and social factors of conservation opportunity across a landscape of regional conservation importance. Four groups of landowners were identified, in rank order, for a phased implementation process. Furthermore, using psychometric statistical techniques, we reduced the number of interview questions from 165 to 45, which is a preliminary step toward developing surrogates for human and social factors that can be developed rapidly and complemented with measures of conservation value, vulnerability, and economic cost to more‐effectively schedule conservation actions. This work provides conservation and land management professionals direction on where and how implementation of local‐scale conservation should be undertaken to ensure it is feasible.  相似文献   

5.
Abstract: Conservation development projects combine real‐estate development with conservation of land and other natural resources. Thousands of such projects have been conducted in the United States and other countries through the involvement of private developers, landowners, land trusts, and government agencies. Previous research has demonstrated the potential value of conservation development for conserving species, ecological functions, and other resource values on private lands, especially when traditional sources of conservation funding are not available. Nevertheless, the aggregate extent and effects of conservation development were previously unknown. To address this gap, we estimated the extent and trends of conservation development in the United States and characterized its key attributes to understand its aggregate contribution to land‐conservation and growth‐management objectives. We interviewed representatives from land trusts, planning agencies, and development companies, searched the Internet for conservation development projects and programs, and compiled existing databases of conservation development projects. We collected data on 3884 projects encompassing 1.38 million ha. About 43% of the projects targeted the conservation of specific plant or animal species or ecological communities of conservation concern; 84% targeted the protection of native ecosystems representative of the project area; and 42% provided buffers to existing protected areas. The percentage of protected land in conservation development projects ranged from <40% to >99%, and the effects of these projects on natural resources differed widely. We estimate that conservation development projects have protected roughly 4 million ha of land in the United States and account for about 25% of private‐land conservation activity nationwide.  相似文献   

6.
Land‐acquisition strategies employed by conservation organizations vary in their flexibility. Conservation‐planning theory largely fails to reflect this by presenting models that are either extremely inflexible—parcel acquisitions are irreversible and budgets are fixed—or extremely flexible—previously acquired parcels can readily be sold. This latter approach, the selling of protected areas, is infeasible or problematic in many situations. We considered the value to conservation organizations of increasing the flexibility of their land‐acquisition strategies through their approach to financing deals. Specifically, we modeled 2 acquisition‐financing methods commonly used by conservation organizations: borrowing and budget carry‐over. Using simulated data, we compared results from these models with those from an inflexible fixed‐budget model and an extremely flexible selling model in which previous acquisitions could be sold to fund new acquisitions. We then examined 3 case studies of how conservation organizations use borrowing and budget carry‐over in practice. Model comparisons showed that borrowing and budget carry‐over always returned considerably higher rewards than the fixed‐budget model. How they performed relative to the selling model depended on the relative conservation value of past acquisitions. Both the models and case studies showed that incorporating flexibility through borrowing or budget carry‐over gives conservation organizations the ability to purchase parcels of higher conservation value than when budgets are fixed without the problems associated with the selling of protected areas.  相似文献   

7.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   

8.
Abstract: The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science–policy interface. Similarly, boundary organizations—organizations or institutions that bridge different scales or mediate the relationship between science and policy—could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.  相似文献   

9.
Facing tight resource constraints, conservation organizations must allocate funds available for habitat protection as effectively as possible. Often, they combine spatially referenced economic and biodiversity data to prioritize land for protection. We tested how sensitive these prioritizations could be to differences in the spatial grain of these data by demonstrating how the conclusion of a classic debate in conservation planning between cost and benefit targeting was altered based on the available information. As a case study, we determined parcel‐level acquisition costs and biodiversity benefits of land transactions recently undertaken by a nonprofit conservation organization that seeks to protect forests in the eastern United States. Then, we used hypothetical conservation plans to simulate the types of ex ante priorities that an organization could use to prioritize areas for protection. We found the apparent effectiveness of cost and benefit targeting depended on the spatial grain of the data used when prioritizing parcels based on local species richness. However, when accounting for complementarity, benefit targeting consistently was more efficient than a cost targeting strategy regardless of the spatial grain of the data involved. More pertinently for other studies, we found that combining data collected over different spatial grains inflated the apparent effectiveness of a cost targeting strategy and led to overestimation of the efficiency gain offered by adopting a more integrative return‐on‐investment approach.  相似文献   

10.
Conservation Planning as a Transdisciplinary Process   总被引:1,自引:0,他引:1  
Abstract: Despite substantial growth in the field of conservation planning, the speed and success with which conservation plans are converted into conservation action remains limited. This gap between science and action extends beyond conservation planning into many other applied sciences and has been linked to complexity of current societal problems, compartmentalization of knowledge and management sectors, and limited collaboration between scientists and decision makers. Transdisciplinary approaches have been proposed as a possible way to address these challenges and to bridge the gap between science and action. These approaches move beyond the bridging of disciplines to an approach in which science becomes a social process resolving problems through the participation and mutual learning of stakeholders. We explored the principles of transdisciplinarity, in light of our experiences as conservation‐planning researchers working in South Africa, to better understand what is required to make conservation planning transdisciplinary and therefore more effective. Using the transdisciplinary hierarchy of knowledge (empirical, pragmatic, normative, and purposive), we found that conservation planning has succeeded in integrating many empirical disciplines into the pragmatic stakeholder‐engaged process of strategy development and implementation. Nevertheless, challenges remain in engagement of the social sciences and in understanding the social context of implementation. Farther up this knowledge hierarchy, at the normative and purposive levels, we found that a lack of integrated land‐use planning and policies (normative) and the dominant effect of national values (purposive) that prioritize growth and development limit the effectiveness and relevance of conservation plans. The transdisciplinary hierarchy of knowledge highlighted that we need to move beyond bridging the empirical and pragmatic disciplines into the complex normative world of laws, policies, and planning and become engaged in the purposive processes of decision making, behavior change, and value transfer. Although there are indications of progress in this direction, working at the normative and purposive levels requires time, leadership, resources, skills that are absent in conservation training and practice, and new forms of recognition in systems of scientific reward and funding.  相似文献   

11.
Abstract: Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single‐species assessments and ecosystem‐level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km2 with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade‐offs of different scenarios of land‐cover change in terms of species occupancy.  相似文献   

12.
Abstract: Because habitat loss due to urbanization is a primary threat to biodiversity, and land‐use decisions in urbanizing areas are mainly made at the local level, land‐use planning by municipal planning departments has a potentially important—but largely unrealized—role in conserving biodiversity. To understand planners’ perspectives on the factors that facilitate and impede biodiversity conservation in local planning, we interviewed directors of 17 municipal planning departments in the greater Seattle (Washington, U.S.A.) area and compared responses of planners from similar‐sized jurisdictions that were “high” and “low performing” with respect to incorporation of biodiversity conservation in local planning. Planners from low‐performing jurisdictions regarded mandates from higher governmental levels as the primary drivers of biodiversity conservation, whereas those from high‐performing jurisdictions regarded community values as the main drivers, although they also indicated that mandates were important. Biodiversity conservation was associated with presence of local conservation flagship elements (e.g., salmonids) and human‐centered benefits of biodiversity conservation (e.g., quality of life). Planners from high‐ and low‐performing jurisdictions favored different planning mechanisms for biodiversity conservation, perhaps reflecting differences in funding and staffing. High performers reported more collaborations with other entities on biodiversity issues. Planners’ comments indicated that the term biodiversity may be problematic in the context of local planning. The action most planners recommended to increase biodiversity conservation in local planning was public education. These results suggest that to advance biodiversity conservation in local land‐use planning, conservation biologists should investigate and educate the public about local conservation flagships and human benefits of local biodiversity, work to raise ecological literacy and explain biodiversity more effectively to the public, and promote collaboration on biodiversity conservation among jurisdictions and inclusion of biodiversity specialists in planning departments.  相似文献   

13.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

14.
Abstract: Funding for conservation is limited, and its investment for maximum conservation gain can likely be enhanced through the application of relevant science. Many donor institutions support and use science to pursue conservation goals, but their activities remain relatively unfamiliar to the conservation‐science community. We examined the priorities and practices of U.S.‐based private foundations that support biodiversity conservation. We surveyed 50 donor members of the Consultative Group on Biological Diversity (CGBD) to address three questions: (1) What support do CGBD members provide for conservation science? (2) How do CGBD members use conservation science in their grant making and strategic thinking? (3) How do CGBD members obtain information about conservation science? The 38 donor institutions that responded to the survey made $340 million in grants for conservation in 2005, including $62 million for conservation science. Individual foundations varied substantially in the proportion of conservation funds allocated to science. Foundations also varied in the ways and degree to which they used conservation science to guide their grant making. Respondents found it “somewhat difficult” to stay informed about conservation science relevant to their work, reporting that they accessed conservation science information mainly through their grantees. Many funders reported concerns about the strategic utility of funding conservation science to achieve conservation gains. To increase investment by private foundations in conservation science, funders, researchers, and conservation practitioners need to jointly identify when and how new scientific knowledge will lower barriers to conservation gains. We envision an evolving relationship between funders and conservation scientists that emphasizes primary research and synthesis motivated by (1) applicability, (2) human‐ecosystem interactions, (3) active engagement among scientists and decision makers, and (4) broader communication of relevant scientific information.  相似文献   

15.
Abstract: Spatially explicit information on the financial costs of conservation actions can improve the ability of conservation planning to achieve ecological and economic objectives, but the magnitude of this improvement may depend on the accuracy of the cost estimates. Data on costs of conservation actions are inherently uncertain. For example, the cost of purchasing a property for addition to a protected‐area network depends on the individual landholder's preferences, values, and aspirations, all of which vary in space and time, and the effect of this uncertainty on the conservation priority of a site is relatively untested. We investigated the sensitivity of the conservation priority of sites to uncertainty in cost estimates. We explored scenarios for expanding (four‐fold) the protected‐area network in Queensland, Australia to represent a range of vegetation types, species, and abiotic environments, while minimizing the cost of purchasing new properties. We estimated property costs for 17, 790 10 × 10 km sites with data on unimproved land values. We systematically changed property costs and noted how these changes affected conservation priority of a site. The sensitivity of the priority of a site to changes in cost data was largely dependent on a site's importance for meeting conservation targets. Sites that were essential or unimportant for meeting targets maintained high or low priorities, respectively, regardless of cost estimates. Sites of intermediate conservation priority were sensitive to property costs and represented the best option for efficiency gains, especially if they could be purchased at a lower price than anticipated. Thus, uncertainty in cost estimates did not impede the use of cost data in conservation planning, and information on the sensitivity of the conservation priority of a site to estimates of the price of land can be used to inform strategic conservation planning before the actual price of the land is known.  相似文献   

16.
Abstract: In light of limited conservation funding, global conservation initiatives are increasingly focused on regions of the planet that have been identified as valuable on the basis of their species diversity, the vulnerability of resident species to extinction, or the perceived pristine nature of their ecosystems. Regions that have been resilient to high rates of extinction have not yet been systematically considered in conservation efforts. We used published range maps for 392 vertebrate species to compare historical and current species ranges. We used the results of the comparison to identify regions of the globe in which no known vertebrate species has been extirpated in the past 200 years. In 17 regions, no detectable vertebrate extinctions occurred in the past 200 years. In 6 other regions, reintroductions of species restored the full historic complement of vertebrate species. The effects of humans on a landscape, as measured by the human‐footprint index, although useful, was not a singularly good predictor of faunal intactness because more than 20% of intact land area was in heavily affected areas (50% of Earth's land area), and several regions where humans have had very little effect did not have intact faunas. Only 22% of intact land area was within protected‐area networks. High‐latitude areas were particularly underrepresented; they made up 3 of the 4 least‐protected areas in our analyses. Our results indicate that although protected areas are in some cases associated with the prevention of extinctions, there are many regions in which human activity coexists with intact vertebrate assemblages. In addition, our new approach for assessing the value of global regions for conservation identifies several regions that are not represented in other prioritization metrics.  相似文献   

17.
Abstract: The search for generalities in ecology has often been thwarted by contingency and ecological complexity that limit the development of predictive rules. We present a set of concepts that we believe succinctly expresses some of the fundamental ideas in conservation biology. (1) Successful conservation management requires explicit goals and objectives. (2) The overall goal of biodiversity management will usually be to maintain or restore biodiversity, not to maximize species richness. (3) A holistic approach is needed to solve conservation problems. (4) Diverse approaches to management can provide diverse environmental conditions and mitigate risk. (5) Using nature's template is important for guiding conservation management, but it is not a panacea. (6) Focusing on causes not symptoms enhances efficacy and efficiency of conservation actions. (7) Every species and ecosystem is unique, to some degree. (8) Threshold responses are important but not ubiquitous. (9) Multiple stressors often exert critical effects on species and ecosystems. (10) Human values are variable and dynamic and significantly shape conservation efforts. We believe most conservation biologists will broadly agree these concepts are important. That said, an important part of the maturation of conservation biology as a discipline is constructive debate about additional or alternative concepts to those we have proposed here. Therefore, we have established a web‐based, online process for further discussion of the concepts outlined in this paper and developing additional ones.  相似文献   

18.
Abstract: Evaluation is important for judiciously allocating limited conservation resources and for improving conservation success through learning and strategy adjustment. We evaluated the application of systematic conservation planning goals and conservation gains from incentive‐based stewardship interventions on private land in the Cape Lowlands and Cape Floristic Region, South Africa. We collected spatial and nonspatial data (2003–2007) to determine the number of hectares of vegetation protected through voluntary contractual and legally nonbinding (informal) agreements with landowners; resources spent on these interventions; contribution of the agreements to 5‐ and 20‐year conservation goals for representation and persistence in the Cape Lowlands of species and ecosystems; and time and staff required to meet these goals. Conservation gains on private lands across the Cape Floristic Region were relatively high. In 5 years, 22,078 ha (27,800 ha of land) and 46,526 ha (90,000 ha of land) of native vegetation were protected through contracts and informal agreements, respectively. Informal agreements often were opportunity driven and cheaper and faster to execute than contracts. All contractual agreements in the Cape Lowlands were within areas of high conservation priority (identified through systematic conservation planning), which demonstrated the conservation plan's practical application and a high level of overlap between resource investment (approximately R1.14 million/year in the lowlands) and priority conservation areas. Nevertheless, conservation agreements met only 11% of 5‐year and 9% of 20‐year conservation goals for Cape Lowlands and have made only a moderate contribution to regional persistence of flora to date. Meeting the plan's conservation goals will take three to five times longer and many more staff members to maintain agreements than initially envisaged.  相似文献   

19.
Conservation decisions increasingly involve multiple environmental and social objectives, which result in complex decision contexts with high potential for trade‐offs. Improving social equity is one such objective that is often considered an enabler of successful outcomes and a virtuous ideal in itself. Despite its idealized importance in conservation policy, social equity is often highly simplified or ill‐defined and is applied uncritically. What constitutes equitable outcomes and processes is highly normative and subject to ethical deliberation. Different ethical frameworks may lead to different conceptions of equity through alternative perspectives of what is good or right. This can lead to different and potentially conflicting equity objectives in practice. We promote a more transparent, nuanced, and pluralistic conceptualization of equity in conservation decision making that particularly recognizes where multidimensional equity objectives may conflict. To help identify and mitigate ethical conflicts and avoid cases of good intentions producing bad outcomes, we encourage a more analytical incorporation of equity into conservation decision making particularly during mechanistic integration of equity objectives. We recommend that in conservation planning motivations and objectives for equity be made explicit within the problem context, methods used to incorporate equity objectives be applied with respect to stated objectives, and, should objectives dictate, evaluation of equity outcomes and adaptation of strategies be employed during policy implementation.  相似文献   

20.
Although the concept of connectivity is decades old, it remains poorly understood and defined, and some argue that habitat quality and area should take precedence in conservation planning instead. However, fragmented landscapes are often characterized by linear features that are inherently connected, such as streams and hedgerows. For these, both representation and connectivity targets may be met with little effect on the cost, area, or quality of the reserve network. We assessed how connectivity approaches affect planning outcomes for linear habitat networks by using the stock‐route network of Australia as a case study. With the objective of representing vegetation communities across the network at a minimal cost, we ran scenarios with a range of representation targets (10%, 30%, 50%, and 70%) and used 3 approaches to account for connectivity (boundary length modifier, Euclidean distance, and landscape‐value [LV]). We found that decisions regarding the target and connectivity approach used affected the spatial allocation of reserve systems. At targets ≥50%, networks designed with the Euclidean distance and LV approaches consisted of a greater number of small reserves. Hence, by maximizing both representation and connectivity, these networks compromised on larger contiguous areas. However, targets this high are rarely used in real‐world conservation planning. Approaches for incorporating connectivity into the planning of linear reserve networks that account for both the spatial arrangement of reserves and the characteristics of the intervening matrix highlight important sections that link the landscape and that may otherwise be overlooked. El Efecto de la Planeación para la Conectividad en Redes de Reservas Lineales  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号