首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wildlife crossing structures are one solution to mitigating the fragmentation of wildlife populations caused by roads, but their effectiveness in providing connectivity has only been superficially evaluated. Hundreds of grizzly (Ursus arctos) and black bear (Ursus americanus) passages through under and overpasses have been recorded in Banff National Park, Alberta, Canada. However, the ability of crossing structures to allow individual and population‐level movements across road networks remains unknown. In April 2006, we initiated a 3‐year investigation into whether crossing structures provide demographic connectivity for grizzly and black bears in Banff National Park. We collected hair with multiple noninvasive methods to obtain genetic samples from grizzly and black bears around the Bow Valley. Our objectives were to determine the number of male and female grizzly and black bears that use crossing structures; examine spatial and temporal patterns of crossings; and estimate the proportions of grizzly and black bear populations in the Bow Valley that use crossing structures. Fifteen grizzly (7 female, 8 male) and 17 black bears (8 female, 9 male) used wildlife crossing structures. The number of individuals detected at wildlife crossing structures was highly correlated with the number of passages in space and time. Grizzly bears used open crossing structures (e.g., overpasses) more often than constricted crossings (e.g., culverts). Peak use of crossing structures for both bear species occurred in July, when high rates of foraging activity coincide with mating season. We compared the number of bears that used crossings with estimates of population abundance from a related study and determined that substantial percentages of grizzly (15.0% in 2006, 19.8% in 2008) and black bear (17.6% in 2006, 11.0% in 2008) populations used crossing structures. On the basis of our results, we concluded wildlife crossing structures provide demographic connectivity for bear populations in Banff National Park. Conectividad Demográfica para Poblaciones de Úrsidos en Estructuras para Cruce de Vida Silvestre en el Parque Nacional Banff  相似文献   

2.
Abstract: In conservation biology, understanding the causes of endangerment is a key step to devising effective conservation strategies. We used molecular evidence (coalescent simulations of population changes from microsatellite data) and historical information (habitat and human population changes) to investigate how the most‐isolated populations of giant pandas (Ailuropoda melanoleuca) in the Xiaoxiangling Mountains became highly endangered. These populations experienced a strong, recent demographic reduction (60‐fold), starting approximately 250 years BP. Explosion of the human population and use of non‐native crop species at the peak of the Qing Empire resulted in land‐use changes, deforestation, and habitat fragmentation, which are likely to have led to the drastic reduction of the most‐isolated populations of giant pandas. We predict that demographic, genetic, and environmental factors will lead to extinction of giant pandas in the Xiaoxiangling Mountains in the future if the population remains isolated. Therefore, a targeted conservation action—translocation—has been proposed and is being implemented by the Chinese goverment.  相似文献   

3.
Fragmentation of the boreal forest by linear features, including seismic lines, has destabilized predator–prey dynamics, resulting in the decline of woodland caribou (Rangifer tarandus caribou) populations. Restoration of human-altered habitat has therefore been identified as a critical management tool for achieving self-sustaining woodland caribou populations. However, only recently has testing of the response of caribou and other wildlife to restoration activities been conducted. Early work has centered around assessing changes in wildlife use of restored seismic lines. We evaluated whether restoration reduces the movement rates of predators and their associated prey, which is expected to decrease predator hunting efficiency and ultimately reduce caribou mortality. We developed a new method for using cameras to measure fine-scale movement by measuring speed as animals traveled between cameras in an array. We used our method to quantify speed of caribou, moose (Alces alces), bears (Ursus americanus), and wolves (Canis lupus) on treated (restored) and untreated seismic lines. Restoration treatments reduced travel speeds along seismic lines of wolves by 1.38 km/h, bears by 0.55 km/h, and caribou by 1.57 km/h, but did not reduce moose travel speeds. Reduced predator and caribou speeds on treated seismic lines are predicted to decrease encounter rates between predators and caribou and thus lower caribou kill rates. However, further work is needed to determine whether reduced movement rates result in reduced encounter rates with prey, and ultimately reduced caribou mortality.  相似文献   

4.
Abstract: Wildlife‐exclusion fencing and wildlife‐crossing structures (e.g., underpasses and overpasses) are becoming increasingly common features of highway projects around the world. The prey‐trap hypothesis posits that predators exploit crossing structures to detect and capture prey. The hypothesis predicts that predation events occur closer to a highway after the construction of fences and crossing structures and that prey species’ use of crossings increases the probability that predators will attack prey. We examined interactions between ungulates and large carnivores at 28 wildlife crossing structures along 45 km of the Trans‐Canada Highway in Banff National Park, Alberta. We obtained long‐term records of locations where ungulates were killed (kill sites) before and after crossing structures were built. We also placed remote, motion‐triggered cameras at two crossing structures to monitor predator behavior following ungulate passage through the structure. The proximity of ungulate kill sites to the highway was similar before and after construction of fencing and crossing structures. We found only five kill sites near crossing structures after more than 32,000 visits over 13 years. We found no evidence that predator behavior at crossing structures is affected by prey movement. Our results suggest that interactions between large mammals and their prey at wildlife‐crossing structures in Banff National Park are not explained by the prey‐trap hypothesis.  相似文献   

5.
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long‐lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10‐year capture‐recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1–2 orders of magnitude too high for many long‐lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context. Reexaminando el Concepto de Población Mínima Viable para Especies Longevas Resumen  相似文献   

6.
Conservation of species at risk of extinction is complex and multifaceted. However, mitigation strategies are typically narrow in scope, an artifact of conservation research that is often limited to a single species or stressor. Knowledge of an entire community of strongly interacting species would greatly enhance the comprehensiveness and effectiveness of conservation decisions. We investigated how camera trapping and spatial count models, an extension of spatial-recapture models for unmarked populations, can accomplish this through a case study of threatened boreal woodland caribou (Rangifer tarandus caribou). Population declines in caribou are precipitous and well documented, but recovery strategies focus heavily on control of wolves (Canis lupus) and pay less attention to other known predators and apparent competitors. Obtaining necessary data on multispecies densities has been difficult. We used spatial count models to concurrently estimate densities of caribou, their predators (wolf, black bear [Ursus americanus], and coyote [Canis latrans]), and alternative prey (moose [Alces alces] and white-tailed deer [Odocoileus virginianus]) from a camera-trap array in a highly disturbed landscape within northern Alberta's Oil Sands Region. Median densities were 0.22 caribous (95% Bayesian credible interval [BCI] = 0.08–0.65), 0.77 wolves (95% BCI = 0.26–2.67), 2.39 moose (95% BCI = 0.56–7.00), 2.64 coyotes (95% BCI = 0.45–6.68), and 3.63 black bears (95% BCI = 1.25–8.52) per 100 km2. (The white-tailed deer model did not converge.) Although wolf densities were higher than densities recommended for caribou conservation, we suggest the markedly higher black bear and coyote densities may be of greater concern, especially if government wolf control further releases these species. Caribou conservation with a singular focus on wolf control may leave caribou vulnerable to other predators. We recommend a broader focus on the interacting species within a community when conserving species.  相似文献   

7.
Abstract: Most protected areas are too small to sustain populations of wide‐ranging mammals; thus, identification and conservation of high‐quality habitat for those animals outside parks is often a high priority, particularly for regions where extensive land conversion is occurring. This is the case in the vicinity of Emas National Park, a small protected area in the Brazilian Cerrado. Over the last 40 years the native vegetation surrounding the park has been converted to agriculture, but the region still supports virtually all of the animals native to the area. We determined the effectiveness of scat‐detection dogs in detecting presence of five species of mammals threatened with extinction by habitat loss: maned wolf (Chrysocyon brachyurus), puma (Puma concolor), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), and giant armadillo (Priodontes maximus). The probability of scat detection varied among the five species and among survey quadrats of different size, but was consistent across team, season, and year. The probability of occurrence, determined from the presence of scat, in a randomly selected site within the study area ranged from 0.14 for jaguars, which occur primarily in the forested areas of the park, to 0.91 for maned wolves, the most widely distributed species in our study area. Most occurrences of giant armadillos in the park were in open grasslands, but in the agricultural matrix they tended to occur in riparian woodlands. At least one target species occurred in every survey quadrat, and giant armadillos, jaguars, and maned wolves were more likely to be present in quadrats located inside than outside the park. The effort required for detection of scats was highest for the two felids. We were able to detect the presence for each of five wide‐ranging species inside and outside the park and to assign occurrence probabilities to specific survey sites. Thus, scat dogs provide an effective survey tool for rare species even when accurate detection likelihoods are required. We believe the way we used scat‐detection dogs to determine the presence of species can be applied to the detection of other mammalian species in other ecosystems.  相似文献   

8.
Abstract: The effectiveness of rare plant conservation will increase when life history, demographic, and genetic data are considered simultaneously. Inbreeding depression is a widely recognized genetic concern in rare plant conservation, and the mixing of genetically diverse populations in restoration efforts is a common remedy. Nevertheless, if populations with unrecognized intraspecific chromosome variation are crossed, progeny fitness losses will range from partial to complete sterility, and reintroductions and population augmentation of rare plants may fail. To assess the current state of cytological knowledge of threatened and endangered plants in the continental United States, we searched available resources for chromosome counts. We also reviewed recovery plans to discern whether recovery criteria potentially place listed species at risk by requiring reintroductions or population augmentation in the absence of cytological information. Over half the plants lacked a chromosome count, and when a taxon did have a count it generally originated from a sampling intensity too limited to detect intraspecific chromosome variation. Despite limited past cytological sampling, we found 11 plants with documented intraspecific cytological variation, while 8 others were ambiguous for intraspecific chromosome variation. Nevertheless, only one recovery plan addressed the chromosome differences. Inadequate within‐species cytological characterization, incomplete sampling among listed taxa, and the prevalence of interspecific and intraspecific chromosome variation in listed genera, suggests that other rare plants are likely to have intraspecific chromosome variation. Nearly 90% of all recovery plans called for reintroductions or population augmentation as part of recovery criteria despite the dearth of cytological knowledge. We recommend screening rare plants for intraspecific chromosome variation before reintroductions or population augmentation projects are undertaken to safeguard against inadvertent mixtures of incompatible cytotypes.  相似文献   

9.
Apparent competition is an indirect interaction between 2 or more prey species through a shared predator, and it is increasingly recognized as a mechanism of the decline and extinction of many species. Through case studies, we evaluated the effectiveness of 4 management strategies for species affected by apparent competition: predator control, reduction in the abundances of alternate prey, simultaneous control of predators and alternate prey, and no active management of predators or alternate prey. Solely reducing predator abundances rapidly increased abundances of alternate and rare prey, but observed increases are likely short‐lived due to fast increases in predator abundance following the cessation of control efforts. Substantial reductions of an abundant alternate prey resulted in increased predation on endangered huemul (Hippocamelus bisulcus) deer in Chilean Patagonia, which highlights potential risks associated with solely reducing alternate prey species. Simultaneous removal of predators and alternate prey increased survival of island foxes (Urocyon littoralis) in California (U.S.A.) above a threshold required for population recovery. In the absence of active management, populations of rare woodland caribou (Rangifer tarandus caribou) continued to decline in British Columbia, Canada. On the basis of the cases we examined, we suggest the simultaneous control of predators and alternate prey is the management strategy most likely to increase abundances and probabilities of persistence of rare prey over the long term. Knowing the mechanisms driving changes in species’ abundances before implementing any management intervention is critical. We suggest scientists can best contribute to the conservation of species affected by apparent competition by clearly communicating the biological and demographic forces at play to policy makers responsible for the implementation of proposed management actions. Estrategias de Conservación para Especies Afectadas por Competencia Aparente  相似文献   

10.
Abstract: Predation pressure on vulnerable bird species has made predator control an important issue for international nature conservation. Predator removal by culling or translocation is controversial, expensive, and time‐consuming, and results are often temporary. Thus, it is important to assess its effectiveness from all available evidence. We used explicit systematic review methodology to determine the impact of predator removal on four measurable responses in birds: breeding performance (hatching success and fledging success) and population size (breeding and postbreeding). We used meta‐analysis to summarize results from 83 predator removal studies from six continents. We also investigated whether characteristics of the prey, predator species, location, and study methodology explained heterogeneity in effect sizes. Removing predators increased hatching success, fledging success, and breeding populations. Removing all predator species achieved a significantly larger increase in breeding population than removing only a subset. Postbreeding population size was not improved on islands, or overall, but did increase on mainlands. Heterogeneity in effect sizes for the four population parameters was not explained by whether predators were native or introduced; prey were declining, migratory, or game species; or by the study methodology. Effect sizes for fledging success were smaller for ground‐nesting birds than those that nest elsewhere, but the difference was not significant. We conclude that current evidence indicates that predator removal is an effective strategy for the conservation of vulnerable bird populations. Nevertheless, the ethical and practical problems associated with predator removal may lead managers to favor alternative, nonlethal solutions. Research is needed to provide and synthesize data to determine whether these are effective management practices for future policies on bird conservation.  相似文献   

11.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   

12.
The outcomes of species recovery programs have been mixed; high‐profile population recoveries contrast with species‐level extinctions. Each conservation intervention has its own challenges, but to inform more effective management it is imperative to assess whether correlates of wider recovery program success or failure can be identified. To contribute to evidence‐based improvement of future conservation strategies, we conducted a global quantitative analysis of 48 mammalian recovery programs. We reviewed available scientific literature and conducted semistructured interviews with conservation professionals involved in different recovery programs to investigate ecological, management, and political factors associated with population recoveries or declines. Identifying and removing threats was significantly associated with increasing population trend and decreasing conservation dependence, emphasizing that populations are likely to continue to be compromised in the absence of effective threat mitigation and supporting the need for threat monitoring and adaptive management in response to new and potential threats. Lack of habitat and small population size were cited as limiting factors in 56% and 42% of recovery programs, respectively, and both were statistically associated with increased longer term dependence on conservation intervention, demonstrating the importance of increasing population numbers quickly and restoring and protecting habitat. Poor stakeholder coordination and management were also regularly cited by respondents as key weaknesses in recovery programs, indicating the importance of effective leadership and shared goals and management plans. Project outcomes were not influenced by biological or ecological variables such as body mass or habitat, which suggests that these insights into correlates of conservation success and failure are likely to be generalizable across mammals.  相似文献   

13.
Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ~36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high‐profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species’ needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past. Optimismo y Retos para la Conservación Científicamente Basada de Especies Migratorias Dentro y Fuera de Parques Nacionales de E.U.A.  相似文献   

14.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

15.
Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy‐based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy‐based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per‐visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species. Poder de Análisis Espacialmente Explícito para el Monitoreo Basado en Ocupación del Glotón (Gulo gulo) en las Montañas Rocallosas de Estados Unidos  相似文献   

16.
Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite‐inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid‐20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host‐density threshold and cost‐benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host–parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.  相似文献   

17.
Phylogenetically informed imputation methods have rarely been applied to estimate missing values in demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50 bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputation accuracy for vital rates of focal species excluded from the data set either singly or in combination and with and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except when no vital rates were available or for vital rates with high phylogenetic signal (Pagel's λ > 0.8). In these cases, including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04 for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate demographic data and metrics, such as generation time, are needed to inform conservation planning processes, for example through International Union for Conservation of Nature Red List assessments and population viability analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness of the sensitivities of demographic model outputs to the imputed vital rates is essential.  相似文献   

18.
Abstract: Reintroduction of captive‐reared animals has become increasingly popular in recent decades as a conservation technique, but little is known of how demographic factors affect the success of reintroductions. We believe whether the increase in population persistence associated with reintroduction is sufficient to warrant the cost of rearing and relocating individuals should be considered as well. We examined the trade‐off between population persistence and financial cost of a reintroduction program for Crested Coots (Fulica cristata). This species was nearly extirpated from southern Europe due to unsustainable levels of hunting and reduction in amount and quality of habitat. We used a stochastic, stage‐based, single‐sex, metapopulation model with site‐specific parameters to examine the demographic effects of releasing juveniles or adults in each population for a range of durations. We parameterized the model with data from an unsuccessful reintroduction program in which juvenile captive‐bred Crested Coots were released between 2000 and 2009. Using economic data from the captive‐breeding program, we also determined whether the strategy that maximized abundance coincided with the least expensive strategy. Releasing adults resulted in slightly larger final abundance than the release of nonreproductive juveniles. Both strategies were equally poor in achieving a viable metapopulation, but releasing adults was 2–4 times more expensive than releasing juveniles. To obtain a metapopulation that would be viable for 30 years, fecundity in the wild would need to increase to the values observed in captivity and juvenile survival would need to increase to almost unity. We suggest that the most likely way to increase these vital rates is by increasing habitat quality at release sites.  相似文献   

19.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

20.
Predicting Risk of Habitat Conversion in Native Temperate Grasslands   总被引:1,自引:0,他引:1  
Abstract: Native grasslands that support diverse populations of birds are being converted to cropland at an increasing rate in the Prairie Pothole Region of North America. Although limited funding is currently available to mitigate losses, accurate predictions of probability of conversion would increase the efficiency of conservation measures. We studied conversion of native grassland to cropland in the Missouri Coteau region of North and South Dakota (U.S.A.) during 1989–2003. We estimated the probability of conversion of native grassland to cropland with satellite imagery and logistic regression models that predicted risk of conversion and by comparing the overlap between areas of high biological value and areas most vulnerable to conversion. Annualized probability of conversion was 0.004, and 36,540 ha of native grassland were converted to cropland during the period of our study. Our predictive models fit the data and correctly predicted 70% of observed conversions of grassland. Probability of conversion varied spatially and was correlated with landscape features like amount of surrounding grassland, slope, and soil productivity. Tracts of high biological value were not always at high risk of conversion. We concluded the most biologically valuable areas that are most vulnerable to conversion should be prioritized for conservation. This approach can be applied broadly to other systems and offers great utility for implementing conservation in areas with spatially variable biological value and probability of conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号