首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生活污水正交混凝沉淀实验研究   总被引:6,自引:0,他引:6  
通过烧杯正交混凝沉淀实验,用混凝剂聚合氯化铝(PAC)与助剂聚丙烯酰胺(PAM)和石灰乳(Ca(OH)2)复配对某生活污水进行混凝处理,考察了PAC投加量、PAM投加量和Ca(OH)2投加量三因素对混凝效果的影响。研究结果表明:PAC投加量为50mg/L,PAM投加量为lmg/L,Ca(OH)2投加量为4mg/L时,对废水处理得到较为满意的效果。1P去除率和浊度去除率均达90%以上,COD去除率在60%以上。此为旋流微絮凝-深床过滤组合新工艺中药剂的投加提供了一定的依据。  相似文献   

2.
针对河北某矿矿井水岩粉含量较高(原水浊度为340 NTU)、预沉后水质发白等问题,采用二次混凝+沉淀工艺进行处理,研究了混凝剂、助凝剂、投加方式与投加量对处理效果的影响。结果表明:最佳混凝剂为PAC,最佳助凝剂为阴离子型PAM;最佳投加方式为一次混凝投加100mg/L PAC、二次混凝投加20 mg/L PAC与0.6 mg/L PAM,这一加药条件下的沉淀出水浊度为4.6 NTU,浊度去除率达到98.7%,PAC投加量较一次混凝沉淀减少29.4%;采用二次混凝+沉淀工艺能减少药剂投加量并提高悬浮物去除效率。  相似文献   

3.
利用混凝沉淀联用微电解氧化法对煤气化废水进行深度处理。采用聚合硫酸铁和有机高分子絮凝剂进行混凝实验,混凝后出水采用强化微电解法进一步除去有机物和色度等。实验结果表明混凝实验最佳pH值为6.50,聚合硫酸铁和有机高分子絮凝剂投加浓度分别为300 mg/L和1~3 mg/L,混凝沉淀可以使COD由650.0 mg/L降到209.9 mg/L,平均去除率约67.7%;混凝处理后调节pH值为3.05,Poten MEF-1403填料100 g/L、投加H2O2浓度为100 mg/L、反应105 min后,COD可以降到90.9 mg/L,综合去除率达86.0%,色度由400倍降到6倍,去除率达98.5%,UV254去除率为94.3%。混凝沉淀和强化微电解法组合工艺可以有效的应用于煤气化废水的深度处理,经处理后废水主要指标完全可以达到GB 8978-1996《污水综合排放标准》一级排放标准。  相似文献   

4.
首先对污染河水通过搅拌烧杯试验比较了聚合硫酸铁(PFS)和自制的磁性絮凝剂(MF)加载磁粉混凝沉淀去除浊度和总磷的效果,结果表明,当PFS或MF投加量均为30 mg/L、PAM投加量为0.5 mg/L,磁粉投加量为0.5 g/L,加载混凝沉淀后浊度均1NTU,总磷0.2 mg/L。对河水加载磁粉混凝-高梯度磁过滤现场试验表明,MF混凝产生的絮体密实,加载混凝-磁过滤出水浊度、总磷和SS均比PFS和磁粉的复配投加要小,本工艺处理污染河水具有流程短、效率高和占地面积少的优势。  相似文献   

5.
重金属Pb(Ⅱ)污染原水的应急处理工艺研究   总被引:6,自引:4,他引:2  
采用2种常用混凝剂--聚合硫酸铁(PFS)和聚氯化铝(PACl),以水中Pb(II)浓度突增为背景,研究了混凝剂投加量、目标物初始浓度以及调节pH值和高锰酸钾(KMnO4)预氧化等措施对混凝除Pb(II)效果的影响,同时比较了粉末活性炭(PAC)吸附 混凝和硅藻土吸附 混凝等工艺对Pb(Ⅱ)的去除效果.结果表明,单独投加混凝剂时,投加PFS对Ph(Ⅱ)的去除效果优于投加PACI.2种混凝剂的投加量为10 mg/L时,对Ph(Ⅱ)的去除效果基本达到最好水平,并且Pb(Ⅱ)初始浓度对混凝效果影响最小.在此投加量下调节pH值到9,2种混凝剂对应Pb(Ⅱ)的去除率都在95%以上.KMn04预氧化只在以PACI为混凝剂时对除Pb(Ⅱ)起到一定促进作用.以PFs为混凝剂时,投加10 mg/L的PAC或投加25 mg/L的硅藻土会取得相同的除Pb(Ⅱ)效果,即水中Pb(11)浓度从402 μg/L降至10 μg/L以下;而混凝剂为PACl时,活性炭投加量为20 mg/L或硅藻土投加量为50 mg/L时,水中剩余Ph(Ⅱ)的浓度也可以达标;通过硅藻土与KMnO4联用试验发现,高锰酸钾氧化会削弱硅藻土对Pb(Ⅱ)的吸附作用.综合考虑得出,硅藻土吸附 混凝才是原水应急除Pb(Ⅱ)简单、经济和有效的方法.  相似文献   

6.
根据某革基布企业废水的水质情况,研究了用投加混凝剂处理该废水的方法,探讨了不同混凝剂、混凝剂的投放量和混凝pH值对COD去除率的影响.实验表明,一级混凝沉淀时,FeSO4的最佳投加量为1.4g/L,最佳pH在11.5,而 PFS (聚合硫酸铁)的最佳投加量则为2.0g/L,适合的混凝pH>5;二级混凝沉淀时,Al2(SO4)3的最佳投加量为1.332g/L,而PAC(聚合氯化铝)的最佳投加量则为0.3g/L.  相似文献   

7.
采用化学沉淀结合Fenton法处理焦化废水中的氰化物,分别讨论了Fe SO4的投加量、H2O2的投加量以及溶液初始p H对总氰和易释放氰去除率影响,优化了总氰和易释放氰去除工艺条件。实验结果表明,Fe SO4投加量、溶液初始p H对总氰和易释放氰的去除率影响极为显著;在H2O2投加量为180μL/L、Fe SO4投加量为260mg/L、p H为5.00,总氰和易释放氰去除率分别为95.61%和64.06%,此时溶液中残留的总氰和易释放氰浓度分别为0.450 mg/L和0.235 mg/L,可以实现达标排放。  相似文献   

8.
以我国目前广泛采用的常规净水工艺为基础,开展了水源突发性As(Ⅲ)污染的应急处理工艺中试研究,考察了不同的氧化剂种类、投加量、投加点和不同污染物浓度水平对应急处理工艺效果的影响以及As(Ⅲ)的去除机制.结果表明,当原水As(Ⅲ)为150μg/L,常规处理工艺对As(Ⅲ)的去除率仅为71.85%,其中溶解态的砷和总砷在快速混合、一级絮凝、二絮凝、沉淀、过滤各单元去除率分别为36.00%、5.42%、9.30%、14.95%、7.88%以及9.10%、-3.62%、2.74%、55.12%、8.51%,无法将出水中的As控制在10μg/L以下.预氯化-强化混凝工艺能够将初始浓度为100~600μg/L的As(Ⅲ)控制在10μg/L以下.但在低有效氯投加量时,氨氮浓度以及预氯化点的选择会对处理效果产生影响.KMnO4预氧化-强化混凝工艺能够将初始浓度为100~600μg/L的As(Ⅲ)控制在10μg/L以下,且其处理效果明显优于预氯化,预氧化点的选择不会对处理效果产生明显影响.建议有条件的水厂优先选用KMnO4作为As(Ⅲ)的氧化剂.  相似文献   

9.
文章研究了在模拟条件下污水厂中百菌清污染的应急处理措施。试验结果表明:投加粉末活性炭可有效地去除百菌清,确保出水达到水厂排放标准,粉末活性炭在40 min内即可完成对百菌清87%以上的吸附,投加量在1.0 g/L时,溶液中剩余百菌清的含量为痕量,在气象色谱的检测下限(0.024μg/L)范围内;混凝沉淀工艺对百菌清也有较好的去除效果,在混凝剂投加量为150 mg/L的条件下,百菌清的去除率可达85.39%;粉末活性炭吸附和混凝工艺联用可以形成互补,有效去除百菌清的同时保证处理后出水碳水分离。  相似文献   

10.
采用Fenton氧化和混凝法对某制药厂的噻烷和噻唑生产废水进行预处理,结果表明噻烷废水宜采用先芬顿后混凝,而噻唑废水宜采用先混凝后芬顿。噻烷废水和噻唑废水H2O2投加量均为100 m L/L,反应时间均为6 h,最佳pH为2~3,FeSO4·7H2O与H2O2的最佳物质的量比分别为1∶5和1∶6,FeSO4·7H2O的投加量为49.06 g/L和40.88 g/L。噻唑废水预混凝处理的液态聚合氯化铝铁最佳投加量为40 m L/L;噻烷废水芬顿氧化后的混凝剂Ca(OH)2投加量为20 g/L,该药剂在混凝处理的同时调节系统的pH至7左右。2种组合技术对进水COD在15 000 mg/L左右的噻烷/噻唑制药废水的去除率均在85%以上。  相似文献   

11.
重金属引起的给水污染是威胁人体健康的元凶首恶之一,也为传统给水处理工艺提出更大的挑战.本文以强化混凝沉淀的方法处理铬、镉复合污染的水源水,旨在通过优化原工艺应对突发污染.研究表明,针对铬和镉的初始污染浓度分别为0.170 0 mg/L和0.030 0 mg/L的复合污染水源水,采用分段工艺,只需在原水的pH值的条件下,投加混凝剂(FeCl3)20.0 mg/L,混凝剂(PAFC)的投加量为2mg/L,出水即可以达到国家出水标准.处理过程模拟水厂现有工艺,无需新增设备,易于操作.  相似文献   

12.
六氯苯污染源水的饮用水应急处理工艺研究   总被引:5,自引:2,他引:3       下载免费PDF全文
针对长江水源地可能发生的六氯苯(HCB)突发污染事故,开展了应急处理工艺研究.考察了混凝剂聚合硫酸铁(PFS)投加量、KMnO4预氧化和木质粉末活性炭(PAC)吸附预处理对HCB 去除效果的影响.根据静态试验,设计了三因素三水平正交试验,进一步考察了KMnO4氧化与PAC 吸附联用预处理-混凝沉淀工艺去除HCB 的效果.结果表明,常规处理无法有效去除HCB;单独KMnO4 预氧化无法明显改善混凝沉淀对HCB的去除效果;PAC联用吸附预处理可明显提高去除效率.正交试验结果表明,在PAC,PFS,KMnO4投加量分别为40,5.0,0.5mg/L的最佳条件下,HCB 去除率为98.97%,但浊度在2NTU 以上.选取PAC 吸附预处理-混凝沉淀工艺进行中试试验,结果表明,在PFS 和PAC 投加量分别为15mg/L 和40mg/L 时,HCB 的去除率在98%以上,HCB 剩余浓度和浊度分别在1µg/L 和1NTU 以下.  相似文献   

13.
在常规水处理工艺前增加生物预处理工艺,研究接触氧化沟和BAF分别作为混凝沉淀工艺的预处理工艺对石油类污染物的去除效果。原水石油类含量平均值为0.19mg/L,在三氯化铁投加量80mg/L时,接触氧化沟+常规混凝沉淀出水石油类含量平均值为0.07mg/L;BAF+常规混凝沉淀出水石油类含量平均值为0.039mg/L。结果表明,BAF作为给水生物预处理工艺对石油类污染物的去除能力优于接触氧化沟工艺,实验期间其后续混凝沉淀出水达标率为86.7%。  相似文献   

14.
针对矿井水浊度高,处理设施占地大和沉淀时间长的问题,通过试验考察了混凝剂、微砂投加量和静沉时间等因素对强化混凝效果的影响。试验结果表明:微砂重辅强化后浊度去除效果优于常规混凝工艺;在最优条件下,即PAC 15 mg/L,微砂2.0 mg/L,PAM0.15 mg/L时,浊度去除率可达到98.9%。该法可强化混凝效果,减少混凝剂投加量,缩短水力停留时间,为矿井水的降浊处理提供了技术参考。  相似文献   

15.
为验证采用生化组合工艺处理煤化工废水可行性,采用"水解+A~2O生化+混凝沉淀+臭氧催化氧化+生化"组合工艺处理煤气化废水,系统出水COD≤60.00 mg/L,氨氮≤3 mg/L。通过试验确定工艺设计参数:生化处理工艺总水力停留时间90.66小时;生化处理运行负荷1.23 kg COD/m~3·d;臭氧投加量40.00 mg/L;PAC药剂投加量为400 mg/L。  相似文献   

16.
针对PCB络合废水络合铜浓度高、COD难达标、可生化性差等特点,在研究铜对铁碳微电解和Fenton氧化的催化作用的基础上,采用催化铁内电解-Fenton催化氧化联合自催化氧化还原技术对PCB络合废水进行处理,并通过混凝实验进一步去除废水中污染物。零价铁可置换出络合铜中的铜,单质铜与零价铁可形成Fe-Cu催化还原体系,对Fenton氧化也具有催化作用,可有效提高废水的处理效果。通过单因素实验确定各工艺最佳反应条件,实验结果表明,催化铁内电解最佳工艺条件为:p H=2,反应时间为60 min,铁屑投加量为5 g/L;Fenton催化氧化最佳工艺条件为:p H=3,反应时间为60 min,H2O2投加量为15 m L/L;混凝实验PAM最佳投加量为10 mg/L。最佳工艺条件下废水COD和总铜去除率分别可达到94.5%和98.8%,B/C由0.12提高到0.32,废水可生化性得到显著提高,为后续处理创造了条件。  相似文献   

17.
焦化废水采用纳滤工艺进行深度处理会产生大量高浓度的含氟纳滤浓水.针对高氟离子的纳滤浓水,对比考察了Ca(OH)2和CaCl2两种钙盐在焦化纳滤浓水中的除氟效果.研究了Ca(OH)2和CaCl2除氟药剂投加量,合适的pH值,以及纳滤浓水中氯离子、硫酸根离子对除氟的干扰作用.试验结果表明:采用CaCl2可将F-降至10 mg/L以下,最佳条件为初始pH调至10.0,CaCl2投加量为6 000 mg/L,出水pH呈弱碱性,出水中的氟离子低于10 mg/L,达到国家规定的废水排放标准,且采用工艺简便,运行稳定.  相似文献   

18.
通过混凝-异相Fenton组合工艺对高有机物含量的垃圾渗沥液纳滤浓缩液进行试验研究.考察不同处理工况对纳滤浓缩液有机物去除效果的影响.并通过正交试验得出组合工艺的最优工况,分析最优工况下出水达标的可行性.对组合工艺在反应过程中溶解性有机质及氮污染物含量的变化情况进行探讨.并分析了组合工艺的药剂投加成本.结果表明:组合工艺对COD去除的最优处理工况为:PFS投加量为6g/L,混凝初始pH值为7,PAM投加量为25mg/L、H2O2与COD质量比为10,Fenton反应初始pH值为4,催化剂与COD质量比为16.在最优工况下COD去除率为98.62%.经组合工艺处理后出水水质可实现达标排放.在反应过程中,混凝单元能够降低异相Fenton单元的处理负荷并保证了组合工艺出水中TN和NH4+-N的达标排放,组合工艺对浓缩液中HA、FA与TON的去除率分别为93.54%、86.80%与83.98%.异相Fenton单元对混凝过程中去除效果稍差的HyI进一步氧化分解而实现COD出水达标,其去除率为86.02%.在...  相似文献   

19.
某饮料厂采用"UASB+BAF"工艺处理该厂的果蔬汁饮料废水,但UASB出水中COD、SS浓度较高,不能直接作为BAF的进水。研究表明,用931型复合混凝剂对UASB出水进行强化处理后可满足后续处理要求。在931投加量为40 mg/L、PAM-投加量为1 mg/L、pH=6的条件下,混凝效果最好,出水中COD和SS分别在800mg/L以下和80 mg/L以下,去除率分别在40%和85%以上。现场运行数据表明,混凝强化处理后的出水水质稳定,完全可满足BAF进水的要求。混凝沉淀的总运行成本约0.25元/m3,运行成本合理,具有较高的应用价值。  相似文献   

20.
印钞废水属高浓度难降解有机废水,对环境污染严重。鉴于现有处理工艺出水普遍不达标的情况,通过对比实验确定了改进方案:超滤浓缩液离心出水在进入接触氧化池前,增加新的处理单元(Fenton氧化-混凝)。Fenton氧化最佳条件:FeSO4.7H2O投加量14 g/L,H2O2的投加量34 mL/L,初始pH值6.0,氧化反应时间1.5h,温度18.8℃;混凝过程最佳条件:PAC投加量4 g/L,PAM(5‰)投加量10 mg/L,pH值7。新增单元对废水中COD去除率接近80%,可生化性提高1.6倍,色度降低36%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号