首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
均相Fenton法处理干法腈纶废水工艺优化与分析   总被引:2,自引:0,他引:2  
采用均相Fenton法处理干法腈纶废水,并通过单因素试验和基于中心组合设计的响应面法考察了H2O2投加量、Fe2+投加量、初始pH值及反应时间的影响及其交互作用.同时,建立了以COD去除率为响应值的二次响应曲面模型,并采用方差分析对模型进行了验证.结果表明,影响COD去除效果的各因子显著性顺序依次为:Fe2+投加量>H2O2投加量>初始pH值>反应时间;Fe2+投加量与初始pH值的交互作用最为显著;反应最优组合条件为:H2O2投加量90.0mmol.L-1,Fe2+投加量30.0mmol.L-1、初始pH值3.1,反应时间113.6min,该条件下COD去除率为47.1%,与模型预测值48.5%基本一致.  相似文献   

2.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(pH值为4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上。  相似文献   

3.
文章研究了反应时间、投加量、初始pH值等因素对零价铁修复菲污染土壤的影响。结果表明,在零价铁修复过程中,随着反应时间的增加,菲的去除率相应提高,反应进行到4.5 h后去除率趋于稳定;在0~0.06 g/g范围内,随着零价铁(ZVI)投加量的增加,菲的去除率也呈现上升趋势,当继续投加铁粉,去除率保持稳定;初始pH值影响着零价铁对菲的去除效果,初始pH=2、4时的去除率为33.8%、30.6%。酸性条件下菲的去除主要由于芬顿反应和还原加氢为主的氧化还原作用,碱性条件下则存在一定的吸附作用。另外,初始pH影响土壤中菲的提取率,提取率随着p H的升高而降低。  相似文献   

4.
采用Fenton试剂对阿维菌素废水好氧处理出水进行深度处理,通过正交和单因素试验,考察了初始反应pH值、H2O2投加量、FeSO4投加量和反应时间对废水COD去除率的影响。试验结果表明,最佳反应条件为初始反应pH值3.0、30%H2O2投加量5‰、0.5 mol/L FeSO4投加量1%和反应时间40 min,COD去除率达75%以上,出水ρ(COD)<120 mg/L,可满足GB 21903-2008《发酵类制药工业水污染物排放标准》表2的排放标准要求。  相似文献   

5.
Fenton氧化法预处理垃圾渗滤液试验研究   总被引:1,自引:0,他引:1  
采用Fenton氧化法处理长沙市黑糜峰垃圾填埋场垃圾渗滤液原液,考察了影响COD去除率的各种因素,包括初始pH值、FeSO4·7H2O投加量、双氧水投加量、反应时间及投加方式等,试验结果表明:在初始pH值为3、FeSO4·7H2O投加量为0.5%、双氧水投加量为18 mL/L、反应时间为100 min、投加方式为3次投加的条件下,可使垃圾渗滤液原液的COD去除率达40%左右,并提高了生化比,为后续生物处理改善了条件.  相似文献   

6.
黄仕源  周珉  王晓青  许妍  瞿贤 《环境工程》2013,(Z1):25-27,53
实验采用过氧化氢氧化法处理低浓度含氰废水,考察了过氧化氢浓度、反应时间以及反应pH值对于总氰化物去除率的影响。结果表明:上述研究参数均存在最佳值。在本实验研究范围内,总氰化物初始浓度为3.7 mg/L,过氧化氢浓度为0.96g/L,反应pH值为9,反应时间为2.5 h的条件下,总氰化物去除率达91.2%。实验室小试对比实验表明,过氧化氢和次氯酸钠均能有效处理低浓度含氰废水,但过氧化氢氧化法的药剂成本费比次氯酸钠氧化法的药剂成本费低。  相似文献   

7.
以浸渍法制备了Ce-Mn/Al_2O_3催化剂,研究该催化剂在H_2O_2非均相类Fenton体系中对皮革废水污染物的催化降解性能.在单因素试验的基础上,以COD去除率为响应值,采用Box-Behnken响应曲面法考察了催化剂投加量、H_2O_2投加量、初始pH、反应时间等4个因素之间的单独作用及交互作用,实验数据用Design-Expert 8.0.6软件进行处理,得到二次响应曲面模型.结果表明,4个独立变量对响应值的影响顺序如下:初始pHH_2O_2投加量催化剂投加量反应时间,数学模型拟合度高(R_(adj)~2=0.9349),利用该模型预测的最大COD去除率为78.86%,最佳反应条件为:催化剂投加量56.63 g·L~(-1),H_2O_2投加量315.15 mg·L~(-1),初始pH3.51,反应时间2 h,经实验验证COD去除率为80.94%,与模型预测值偏差2.08%.  相似文献   

8.
通过将Fenton法应用于印染废水的处理,研究pH值、温度、反应时间、Fe2+投加量以及H2O2投加量对Fenton试剂处理印染废水的影响,同时确定Fenton法处理印染废水的最适反应条件。实验结果表明:(1)最适反应条件,即pH值、温度、反应时间、Fe2+投加量、H2O2投加量分别为3,50℃,45 min,70 mg/L,2.5 mL/L,此时COD的去除率最高,为66.60%。(2)pH值为3时,下列因素对COD的去除率影响程度大小依次为H2O2投加量Fe2+投加量反应时间反应温度。  相似文献   

9.
蒋辉  范迪  王娟 《环境科学与管理》2010,35(4):85-89,110
研究采用NaClO产生的HClO代替Fenton试剂中的氧化剂H2O2,并与Fe^2+协同处理焦化厂二级生化出水。结果表明:NaClO投加量,溶液的初始pH值,Fe^2+投加量,反应温度和投加方式是影响Fe^2+/NaClO处理焦化废水效果的重要因素,而反应时间对处理效果的影响不大。在相同实验条件下,Fe^2+/NaClO协同处理焦化废水的效果优于Fenton试剂。NaClO投加量为2 mL/L,pH=3,Fe^2+投加量为40 mg/L,反应时间为10 min,反应温度为25℃~45℃的最佳实验条件下,Fe^2+/NaClO对CODcr的去除率和色度的去除率分别为62.2%和81.7%,剩余CODcr能降到136 mg/L,色度减小为64倍,达到了国家二级排放标准的要求。  相似文献   

10.
应用零价铁法处理木竹制浆造纸含氯漂白工段产生的中段废水。考察了反应时间、pH值、零价铁投加量等因素的影响。结果表明,铁粒投加量、反应时间和实验水样初始pH值对水样中AOX和COD有明显影响,当铁粒投加量为100 g/L、反应时间为4 h、初始pH值为3.0时,AOX去除率可达65.3%,COD去除率可达53.6%。  相似文献   

11.
O_3/Mn_2O_3对钻井废水多相催化臭氧化试验研究   总被引:1,自引:1,他引:1  
张悦  王兵  任宏洋 《环境科学学报》2015,35(10):3185-3192
通过静态试验,探讨了Mn2O3催化剂对钻井废水催化臭氧化处理效果.分别考察了催化剂加量、pH值、反应时间、反应温度和强化剂对钻井废水COD去除率的影响,通过正交试验得到了最佳工艺条件,对钻井废水氧化过程中的产物进行了分析,并探讨了Mn2O3催化剂的稳定性能.结果表明:Mn2O3加量从25 mg·L-1增加到50 mg·L-1时,COD去除率由43.6%增加到54.3%;pH分别为5、11时,COD去除率分别为45.4%和64.3%;反应温度为20℃时,COD去除率最高达到59.1%;随着反应时间的延长,COD去除率也随之增加,反应时间为40 min时,COD去除率达到85.3%;由正交试验得知影响因素的主次关系为催化剂加量反应pH反应温度反应时间,最佳处理工艺条件为催化剂加量50mg·L-1、pH值11,反应温度25℃、反应时间35 min;在25 min时,Ca2+的引入使COD去除率增大了7.1%;钻井废水中的有机物得到降解和矿化;Mn2O3催化剂重复使用10次后,对钻井废水COD降解率影响不大,锰离子的溶出量在反应15 min后稳定在3 mg·L-1,Mn2O3催化剂稳定性能较好.  相似文献   

12.
均相Fenton法深度处理丙烯腈生化尾水   总被引:2,自引:1,他引:1  
采用均相Fenton法深度处理丙烯腈生化处理工艺尾水,通过单因素法分析了H_2O_2投加量、Fe~(2+)投加量、初始p H值和反应时间对尾水COD去除率的影响;并采用中心响应曲面法优化Fenton处理的工艺参数,得到最佳反应条件为:Fe~(2+)投加量为1.02 mmol·L-1,H_2O_2投加量为11.13 mmol·L~(-1),初始pH值为3.66,反应时间为105 min,COD去除率达到61.1%.处理后尾水COD值低于50 mg·L~(-1),可满足石化行业一级排放标准.Fenton工艺对尾水中特征污染物均有较好的去除效果,最佳反应条件下丙烯腈、间苯二甲腈、3-氰基吡啶的去除率分别为99.5%、97.6%、73.7%;Fenton法对3种特征污染物的降解能力从大到小依次为:丙烯腈间苯二甲腈3-氰基吡啶.三维荧光光谱分析表明,尾水中存在大量类富里酸荧光物质,其中,紫外区类富里酸含量最高,Fenton工艺在较短反应时间和较少的试剂投加量条件下,便可有效地去除这类难降解物质.  相似文献   

13.
UV/H2O2光催化氧化法处理表面活性剂废水   总被引:3,自引:0,他引:3  
采用UV/H2O2光催化氧化法处理含表面活性剂废水,考察了反应时间、体系pH值、表面活性剂初始浓度、H2O2投加量、表面活性剂的种类等因素对处理效果的影响,并初步探讨了表面活性剂降解的反应动力学.结果表明,当初始pH值为4、H2O2投加量为1mL/L,反应时间为20min时,表面活性剂DBS的去除率为96%,AOS的去除率为93%,且UV/H2O2体系中,表面活性剂DBS和AOS的降解反应均符合表观拟一级反应动力学特征.  相似文献   

14.
以Fe2O3/γ-Al2O3为催化剂的非均相催化氧化体系处理活性艳蓝KN-R。考察了反应时间、反应温度、pH和Fe2O3/γ-Al2O3投加量等因素对降解效果的影响。结果表明,染料初始浓度为200mg/L时,在温度150℃、压力0.5MPa、H2O233mg/L、pH=6,反应时间1h,Fe2O3/γ-Al2O3投加量为8g/L的最佳条件下,活性艳蓝KN-R色度几乎完全去除,TOC和COD去除率分别为95.6%和82.5%。  相似文献   

15.
采用水热合成法在pH12的条件下合成圆片状Bi3.84W0.16O6.24催化剂.通过XRD、FESEM、TEM、UV-vis漫反射等表征分析Bi3.84W0.16O6.24的物相、形貌和吸光性能.以双酚A(BPA)为目标污染物,研究了Bi3.84W0.16O6.24在模拟太阳光辐射下的光催化反应活性.设计L18(37)正交试验研究了BPA初始浓度、催化剂投入量、反应溶液pH值以及光催化反应时间对Bi3.84W0.16O6.24光催化降解BPA的影响.正交试验的极差和方差分析结果表明,BPA初始浓度和反应时间影响非常显著,催化剂用量影响显著,反应溶液pH值影响不显著,初始浓度和催化剂量的交互作用很小.在BPA初始浓度为20mg/L、催化剂量2g/L、反应溶液pH7、反应时间为90min的条件下Bi3.84W0.16O6.24对BPA去除率达99.5%,TOC去除率为86.0%,BPA的降解符合一级反应动力学.  相似文献   

16.
臭氧氧化反渗透浓缩垃圾渗滤液动力学   总被引:5,自引:2,他引:3  
郑可  周少奇  沙爽  杨梅梅 《环境科学》2011,32(10):2966-2970
采用臭氧氧化法处理经反渗透膜处理后的浓缩垃圾渗滤液,并建立了氧化降解反应动力学模型.结果表明,氧化降解初始反应速率主要与初始pH、臭氧投量、反应温度和初始COD有关.在pH 8.0,温度30℃,臭氧投量5.02 g/h,反应时间90 min的条件下,反渗透浓缩渗滤液的COD去除率达到67.6%;并且在pH为2.0~8....  相似文献   

17.
针对化学镀镍废水氨氮浓度高、去除难度较大等特点,以预处理后的实际化学镀镍废水为试验对象,采用次氯酸钠氧化法脱除废水中的剩余氨氮。分别研究NaClO溶液投加量、反应时间、初始pH值及反应温度对氨氮去除效果的影响,得到较适宜的反应条件为:NaClO溶液投加量为1800 mg/L,反应时间为30 min,初始pH值为6.0~7.0,反应温度为10~30℃。在此条件下,废水氨氮去除率达到91%以上,剩余氨氮浓度低于15 mg/L,满足GB 21900—2008《电镀污染物排放标准》表2中对氨氮的排放限值。结果表明:次氯酸钠氧化作为深度处理方式脱除化学镀镍废水中氨氮是高效可行的。  相似文献   

18.
以考察超声-类Fenton法预处理焦化废水的影响因素为目的,研究了初始pH、Fe_3O_4投加量、H_2O_2投加量和超声波功率对COD去除率的影响。结果表明,预处理焦化废水的最优条件如下:pH为3. 0,Fe_3O_4的质量浓度为1. 0 g/L,H_2O_2(质量分数为30%)的体积分数为1. 0 mL/L,超声波功率为490 W,反应时间为120 min。在此条件下COD的去除率可达70%。  相似文献   

19.
采用O3/H2O2法对某炼油厂石化废水进行预处理,通过正交实验考察了pH、反应时间、O3流量和H2O2投加量对废水COD去除率的影响。单因素优化实验结果表明:在pH值为10.00,反应时间为50min,O3流量为4 g/h,H2O2投加量为30 mmol/L的条件下,废水中COD、挥发酚和色度去除率分别达76.78%、96.79%和94.44%,B/C由原来的0.067提高到0.380,出水可进入后续生化阶段进一步处理。同时,该反应体系符合一级反应动力学方程。  相似文献   

20.
采用混凝-Fenton氧化联合技术,对可生化性差的含有丙烯酸的化工废水进行处理,考察了不同因素对COD去除率的影响。结果表明,对于COD为150000~160000mg/L的高浓度丙烯酸废水,经过混凝和Fenton氧化的联合处理,废水COD的去除率可高达80%左右,但出于实际生产运用中成本、运行难度和污泥量的考虑,选择其混凝最佳反应条件为:10%PAC投加量为5%,1‰PAM投加量为0.25%,pH为9,反应时间1h;Fenton最佳反应条件:初始pH为3,[Fe^2+]/[H2O2]的摩尔比为0.05,H2O2与废水的体积比为2%左右,反应时间3h,沉降1h。在这个条件下,COD的去除率可达60%左右,而且可生化性比较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号