首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
厘清臭氧(O3)区域传输和本地生成贡献对控制O3污染有重要意义.为量化区域背景O3浓度及其时空变化,采用包括主成分分析(PCA)和TCEQ法在内的多种方法,以河南省为案例进行了综合研究.基于2019~2021年河南省59个国控站监测数据,使用4种方法估算区域背景O3浓度.方法1是传统方法,进行O3单变量-多站点的PCA分析.方法2使用二氧化氮和气象参数作为约束条件,进行多变量-单站点的PCA分析.方法3将PCA和多元线性回归(MLR)结合,借鉴源解析思想,确定区域背景贡献.方法4为TCEQ法,将观测的最低O3-8h浓度作为区域背景.结果表明,方法1和方法2估算的区域背景ρ(O3-8h)基本相等,方法3和方法4估算的浓度比方法1低约37~60 μg·m-3. 2019~2021年,方法1~4估算的区域背景ρ(O3-8h)变化分别为1.6、 -13.4、 5.9和-3.5 μg·m-3.多种方法平均估算结果表明,2019~2021年河南省区域背景ρ(O3-8h)分别为82.0、 79.0和79.7 μg·m-3,分别占区域O3-8h总量的75.9%、 76.4%和78.7%. 4种方法估算的区域背景O3都有明显的季节变化,呈夏季 >春季 >秋季 >冬季的特征.  相似文献   

2.
臭氧和氮氧化物四季浓度特征及其相关性   总被引:8,自引:0,他引:8  
根据5a来O3-NOx四季的观测资料,计算了各季O3和NOx的浓度特征及两者之间的线性回归方程。其日平均值的相关显著性,以夏季最强,冬季其次,春秋季畸差。  相似文献   

3.
北京市臭氧的时空分布特征   总被引:12,自引:2,他引:12  
对2012年12月~2013年11月期间北京市35个自动空气监测子站的O3浓度进行分析,探讨北京市O3浓度的时间、空间分布特征,并对夏季的一次O3高浓度过程进行了分析.结果表明,北京市O3浓度在5~8月维持相对较高浓度,其他月份则维持较低浓度.整体来看,4类功能的监测站点中O3平均浓度由高到低分别是对照点及区域点、郊区环境评价点、城区环境评价点和交通污染监控点;O3浓度日变化呈单峰型分布,一般在15:00、16:00达到峰值;O3还呈现明显的"周末效应",即周末白天时段O3浓度大于工作日浓度.北京市O3浓度城区相对较低,周边区县相对较高,生态植被优良的东北部地区浓度最高.2013年6月3日北京市发生一次O3高浓度过程,在下午西南风的作用下,榆垡、丰台花园、奥体中心和怀柔监测站O3峰值出现的时间从南到北依次滞后,且怀柔站在20:00才出现峰值,体现了这次过程中存在明显的O3输送特征.  相似文献   

4.
随着京津冀区域臭氧(O3)污染问题日渐突出,探究和分析京津冀区域O3变化特征和污染过程形成原因对区域大气污染防治工作具有重要意义.观测结果显示,春夏季京津冀区域较高的O3浓度呈现南高北低的分布,北京、天津和石家庄这3座城市O3高浓度往往伴随着偏南风的影响.基于WRF-Chem模式模拟和过程分析技术对2019年京津冀区域O3变化特征和成因进行了深入分析,典型城市化学过程、垂直混合和输送的日变化有着鲜明的季节变化差异.其中在夏季午后化学过程是各城市O3浓度增加的主要来源;垂直混合导致天津和石家庄O3浓度增加,但使得北京O3浓度减少;天津和石家庄存在净输出,而北京则为净流入.通过对比分析O3污染和清洁过程结果表明,化学过程主导北京和石家庄污染过程午后O3浓度增加,天津则为垂直混合,此外,北京和石家庄存在O3净输入,天津则为净输出;而清洁过程中,垂直混合主...  相似文献   

5.
为研究京津冀地区天然源挥发性有机化合物(BVOCs)近20a排放量及时空分布特征,本文基于卫星遥感解译获得的2000年、2005年、2010年、2015年、2020年共5期中国土地利用数据,计算获得了京津冀地区各市县BVOCs排放量及排放组成,同时对京津冀地区近20a的BVOCs排放的时空分布进行了特征分析.结果表明,近20a京津冀地区BVOCs平均排放总量为76.40万t/a,其中河北省、北京市、天津市的平均排放总量分别为59.11万t/a,15.29万t/a,2.00万t/a;按照排放组成分析,ISOP平均排放总量为16.80万t/a,占总排放量的21.99%,TMT平均排放总量为29.62万t/a,占总排放量的38.77%,OVOCs平均排放总量为29.97万t/a,占总排放量的39.23%.根据排放时间特征分析,京津冀地区冬季BVOCs排放量最低、夏季BVOCs排放量最高.BVOCs排放的空间分布与土地利用类型和植被分布密切相关,不同土地利用类型的BVOCs排放贡献具有显著差异,近20a京津冀地区林地、耕地、草地的BVOCs平均排放量分别为60.33万t/a,12.78万t/a,2.31万t/a,分别占总排放量的78.90%,16.79%,3.04%.京津冀地区BVOCs空间排放分布差异比较明显,北部、东北部的整体排放量明显高于南部、东南部.本研究可为BVOCs的计算提供研究思路,同时可为京津冀地区空气污染治理提供有关基础数据.  相似文献   

6.
京津冀对流层甲醛的时空演变特征及其影响因素   总被引:1,自引:0,他引:1  
依据2009—2016年OMI卫星反演的逐日数据,结合遥感图像处理技术和克里金插值法,对京津冀地区对流层甲醛柱浓度的时空特征及影响因素进行了分析.结果发现,2009—2016年8年间京津冀地区甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.01%,最大增长率出现于2009—2010年,为12.91%.8年间,甲醛柱浓度值具有波动性,最低值和最高值分别出现于2009年和2013年.研究区甲醛柱浓度季节变化表现为夏季值秋季值冬季值春季值,甲醛柱浓度月均值在每年的6月达到最高.甲醛柱浓度空间分布的低值区大多处于地势较高的京津冀地区西北部,高值区主要分布在京津冀地区南部平原.甲醛柱浓度变化不仅与自然因素的温度呈显著正相关,与气压呈显著负相关,还与社会经济因素中的煤炭消耗量、原油消耗量及工业增加值等呈正相关.京津冀地区甲醛柱浓度时空特征总体受当地自然和社会经济因素的综合影响.  相似文献   

7.
8.
基于2019年五指山背景点、海口市和三亚市的环境空气自动监测数据和气象观测资料,分析了海南省背景区域和重点城市O3及其前体物NO2污染特征;结合挥发性有机物(VOCs)在线监测数据,分析了五指山背景点VOCs的时间变化规律、O3浓度高值月份O3及其前体物VOCs和NOx的污染特征以及VOCs的臭氧生成潜势(OFP).结果表明,O3是影响五指山背景点空气质量的关键污染物,五指山背景点O3日最大8 h浓度平均值与海口市和三亚市显著相关.背景点NO2月均浓度水平显著低于城市点,然而背景点和城市点O3月均浓度水平和变化趋势高度一致.背景点O3变化与风向密切相关,春夏季偏南风频率较高,O3浓度相对较低;秋冬季以东北风为主,易受内陆污染输送影响,O3浓度较高.五指山背景点春夏季VOCs体积分数低于秋冬季,但对应的OFP高于秋冬季;其中异戊二烯夏季体积分数显著高于秋冬季,且其夏季体积分数占总挥发性有机物的比例最高,对应的OFP贡献率可达70%以上,O3则表现出秋冬季显著高于夏季的特征.11月O3高浓度时段乙炔和芳香烃的体积分数较清洁日出现较大上升,同时其对应的OFP显著上升.VOCs优势物种和OFP主要贡献物种的分析结果表明,O3高浓度时段机动车尾气和油气挥发排放源对五指山背景点VOCs的化学组成和OFP有重要贡献.  相似文献   

9.
吴方堃  孙杰  余晔  唐贵谦  王跃思 《环境科学》2016,37(9):3308-3314
挥发性有机物(VOCs)是臭氧和二次有机气溶胶的重要前体物.为研究中国东北背景地区大气中VOCs浓度和变化特征,应用苏码罐采样技术、三步冷冻浓缩和GC/MS联用技术测定了长白山大气本底站中的VOCs组成、浓度及季节变化,并利用PCA(principal component analysis)受体模型初步解析了白山大气中VOCs来源.结果表明,长白山地区TVOCs年平均浓度(体积分数)为10.7×10~(-9)±6.2×10~(-9),其中卤代烃所占比例最高,占VOCs总浓度的37%,其次是烷烃33%、芳香烃15%、烯烃15%.长白山地区TVOCs呈现明显的季节变化,变化特征为春季﹥秋季﹥夏季﹥冬季,春季大气中的TVOCs浓度显著(P﹤0.05)高于其他季节.利用主成分分析VOCs物种,提取出5个因子,分别归纳为交通源、液化石油气(LPG)、生物源、燃烧源和区域工业输送.结合HYSPLIT-4.0后向轨迹模型,分析周边区域传输对VOCs物种浓度的影响,发现来自西南向气团传输是长白山VOCs物种浓度增加的主要原因.  相似文献   

10.
量化空气质量改善过程中气象条件和减排措施的相对贡献, 有助于科学评估减排措施的实施效果. 本文以2017—2019年京津冀区域13个城市PM2.5质量浓度为研究对象, 采用主成分分析、系统聚类等方法客观确定各次区域的典型代表城市, 并基于环境气象评估指数(EMI)量化空气质量改善过程中气象条件和减排措施的相对贡献. 结果表明, 京津冀区域PM2.5浓度整体呈南高北低特征, 高值区集中在河北省南部, 冬季区域PM2.5浓度显著高于其他季节. 经旋转后的主成分分析可划分出2个主成分, 分别对应河北省中南部地区和京津冀北部地区. 系统聚类将京津冀区域分为3个次区域, 经相似性计算获得次区域典型代表城市为承德、唐山和邢台. 以2017年为基准年开展EMI评估, 结果显示2018年1月承德、唐山和邢台PM2.5浓度下降, 减排和气象条件均有不同程度的贡献; 不利气象条件是2019年1月承德PM2.5上涨的主要原因, 排放造成同期唐山PM2.5浓度上升了52.8%,不利气象条件抵消了邢台减排的效果, 并造成其PM2.5浓度小幅度增加. 京津冀区域各城市PM2.5浓度的同步变化, 排放和气象条件对不同城市的贡献仍然存在很大差异, 在京津冀区域内划分次区域具有重要意义.  相似文献   

11.
东北地区臭氧浓度空间格局演变规律及影响因素   总被引:2,自引:0,他引:2  
采用重心模型、空间自相关分析、地理探测器,研究了2016年东北地区O3浓度的空间分布格局及演变规律,揭示了气象因素和前体物对东北地区O3浓度空间分布格局及演变的影响.结果表明:东北地区O3-8 h-P90分布整体呈南高北低的态势,O3浓度的高值区及超标天数比例较高的地区都集中分布在环渤海地区的沿海城市;气温是影响O3年均浓度空间格局演变的主导因素,随着气温的变化,O3年均浓度空间分布格局呈现空间分异不明显-南高北低-空间分异不明显的演变特征;前体物是核心城市形成局部O3污染的主要原因,其影响力的大小受温度的影响,温度越高,光化学反应越强,前体物的正向影响力越大,温度越低,光化学反应越弱,化学性质活跃的前体物对O3可能起消耗作用.  相似文献   

12.
基于OMI数据的东南沿海大气臭氧浓度时空分布特征研究   总被引:1,自引:0,他引:1  
基于臭氧监测仪(OMI)卫星反演数据,对2005—2018年东南沿海5省区域大气臭氧柱浓度数据进行提取及分析,探讨其时空分布格局及影响因素.结果表明:①在时间变化上,14年间,该区域大气臭氧柱浓度整体呈先上升后下降的趋势,2005—2013年臭氧柱浓度持续升高,最高值为324.52 DU,高值区不断向南部区域扩大;2013—2018年臭氧柱浓度呈下降趋势,最低值为228.27 DU,但在2017、2018年略有上升.②在空间分布上,臭氧柱浓度自北向南逐渐降低,高值区集中分布在江苏及浙江省北部;低值区集中于福建省南部及广东省大部分地区.③在季节变化上,大体呈现出春夏季高于秋冬季,高值区在春夏季交替出现,秋季略高于冬季,但差异不明显.④稳定性分析表明:研究区臭氧柱浓度整体呈现中部分散、南北部集聚、差异较显著的分布格局.⑤自然因素中,风向、气温均呈现显著正相关,江淮地区的梅雨季节(降水)及华南地区的台风和暴雨也起到显著作用.⑥人文因素中,臭氧柱浓度与地区生产总值、各产业生产总值及机动车保有量均表现出正相关,其中,臭氧柱浓度与第二产业的相关度最高.另外,臭氧柱浓度与NO_x排放量表现出显著相关性.VOC_s对臭氧柱浓度的影响中,工业源是主控因素,交通源和居民源次之,电厂源对臭氧柱浓度的影响最弱.这进一步说明臭氧浓度的变化受到了诸多因素的综合影响,但气温、NO_x及VOC_s的排放是臭氧浓度变化的主导因素.  相似文献   

13.
京津冀地区人口集中,具有重要的人居安全保障功能,但区域城镇化发展水平空间差异显著,产城混杂和“散乱污”问题突出,城镇人居环境安全面临严峻挑战,空间布局有待进一步优化。通过地理信息系统对产城空间关系进行分析,同时将人居风险敏感性通过特征指标进行赋值并落到地理空间上,分析发现京津地区、京石一线和唐山等地是京津冀人居安全最敏感、厂房最密集区域,该区域除京津地区工业厂房郊区化趋势明显外,唐山和冀中南地区人口分布与城镇边界、工业厂房分布空间高度重叠,产城关系复杂。最后在人居安全与产城关系分析的基础上,对城镇空间格局优化和人居安全保障提出建议。  相似文献   

14.
以机动车碳排放模型为基础,结合不同类型机动车存活曲线,建立分车龄的车队构成,并利用年均行驶里程和燃油消耗量,分析了京津冀地区2005~2020年道路碳排放量的演变及区域分布特征.结果显示,河北省道路碳排放量增长迅速,近5a仍以7.14%的年均增长率快速增长,而北京和天津两市的道路碳排放已经进入低速增长期,近5a的年均增长率分别仅为1.01%和2.27%.小型客车一直都是道路碳排放的主力车型,其碳排放量占京津冀道路碳排放总量50%以上;轻型货车在北京市道路碳排放中的贡献越来越突出,而河北和天津两地轻型和重型货车正在逐渐发展为道路碳排放增长的主要驱动因素.从京津冀道路碳排放的4km×4km网格分布图可知,因北京和天津拥有更密集的道路,其碳排放强度远高于河北省.  相似文献   

15.
基于2014~2017年京津冀13座城市的O3-8h数据,分析O3时间变化特征及污染状况.在此基础上,结合同期气象数据研究近地层O3浓度与气象要素的关系.结果表明:2014~2017年京津冀区域O3-8h整体呈上升趋势,增长率为4.50μg/m3.区域内O3污染整体加重,北京、保定O3污染较为严重;2014~2015年O3浓度与超标情况的月变化主要呈单峰型变化,峰值出现在5月;而2016~2017年为不规则双峰型变化,峰值出现在5~6月和9月.与气象因子的相关性表明:气象要素对O3的影响具有明显的季节差异,其中春、夏、秋季气温是影响O3浓度变化的主要因素,而在冬季相对湿度与风速为影响O3浓度变化的主要因素.此外,分析表明北京、天津、石家庄3大城市夏季形成高浓度O3的阈值明显不同.  相似文献   

16.
基于卫星观测的青海高原对流层臭氧时空分布特征研究   总被引:3,自引:0,他引:3  
基于OMI-MLS对流层臭氧总量数据集对2005—2019年青海高原对流层大气臭氧总量进行提取分析,探讨其时空分布格局及气象因子的影响.结果表明:①OMI-MLS对流层臭氧总量数据在青海高原的适用性良好.③海高原的多年平均对流层臭氧总量分布整体呈东北高西南低的态势,受地形和大气环流形势影响较大.海东市的对流层臭氧总量最高,其次是西宁市、格尔木市、德令哈市,玉树市的对流层臭氧总量最低.对流层臭氧总量月变化在一定程度上表现为"倒V"型特点:峰值位于6—7月,谷值位于1月,与气温变化密切相关.对流层臭氧总量季节变化明显,空间异质性强,夏季最高,春季、秋季次之,冬季最低.③近15年青海高原对流层臭氧总量呈显著增加趋势,年平均增加速率为0.22 DU,4个季节的对流层臭氧总量均呈波动上升趋势,冬季的对流层臭氧总量增加速率最快,其次是春季、夏季,秋季增加速率较慢.④影响青海高原对流层大气臭氧总量的主要气象因子是气温和降水,而次要因子表现略有不同.  相似文献   

17.
采用重心模型、空间自相关分析和地理探测器,研究了2016年中国东部O3浓度的时空变化规律,揭示了气象因素和前体物对中国东部O3浓度空间分布格局及其演变的影响.结果表明:(1)O3浓度变化可分为3个阶段:1~3月为低值上升阶段、4~9月为高值波动阶段、10~12月为低值下降阶段,O3污染主要发生在高值波动阶段,超标天数占全年的96.0%.(2)气象因素是影响O3年均浓度空间分布格局的主导因素,受降水、相对湿度南高北低和日照时数北高南低的影响,O3年均浓度总体呈北高南低的态势;前体物对O3年均浓度分布也有显著影响,是城市群核心城市形成局部O3污染中心的原因.(3)O3月均浓度分布格局经历了由北高南低到南高北低的演变过程,1~6月O3浓度总体重心和高值重心向北迁移,6月达到最北,北高南低的特征最强,环渤海地区成为O3污染最严重的区域;7~12月,O3浓度总体重心和高值重心向南迁移,12月达到最南,O3浓度分布格局演变为南高北低.3~9月雨季期间,O3浓度分布主要受降水和相对湿度的影响,其余时间主要受气温的影响.(4)前体物对O3浓度分布的影响主要通过气象条件实现,气温越高,光化学反应越强,前体物的正向影响力越大;气温越低,光化学反应越弱,NOx、CO、SO2等化学性质活跃的前体物对O3可能起消耗作用.  相似文献   

18.
根据东亚酸沉降网(EANET)和全球温室气体数据中心(WDCGG)等观测资料,对比各地区近地面O3的季节变化特征,在全球大气化学传输模式MOZART-4中引入在线源追踪方法,结合收支分析,确认各项作用对不同地区O3的贡献量.研究表明,模拟结果能够再现各地区 O3的季节变化特征以及收支量:清洁背景地区(海洋站居多)近地面...  相似文献   

19.
为研究上海春季近地面臭氧污染的区域性特征,对长三角地区55个城市国控站点及上海市54个城市监测站点2016年5月的臭氧监测网络数据进行主成分分析(Principal Component Analysis,PCA),并将分析结果与气象条件进行综合分析,结果表明,主成分分析在不同的空间尺度下可以解析出行为模式不同的臭氧生成及传输来源主成分,且在较大的空间尺度下可以解析出区域背景臭氧浓度.长三角地区春季区域臭氧特征复杂,存在9个主成分,第一主成分所能解释的背景臭氧浓度在68.8~154.7μg·m~(-3)之间,而上海市主成分解析结果较为集中,仅能解析出两个主成分,且第一主成分即可解释90.5%的臭氧.对比同时段长三角及上海市主成分分析解析结果,上海市春季臭氧污染主要受到来自海洋的东南风影响,高浓度臭氧污染的本地生成贡献显著.  相似文献   

20.
广州近地面臭氧浓度特征及气象影响分析   总被引:10,自引:0,他引:10  
利用2015年广州市近地面逐时臭氧(O_3)观测资料及气象数据,分析了广州地区近地面的O_3浓度时空分布特征及其与气象因子的关系.结果表明:广州地区城郊的O_3浓度高于中心城区;广州地区近地面的O_3浓度超标时间主要出现在4—9月,8月O_3浓度最高,3月O_3浓度最低;O_3浓度日变化呈现"单峰型"分布,早上7:00—8:00出现最低值,15:00达到峰值;O_3浓度与气温呈正相关,当气温高于30℃时,O_3浓度随温度升高增加明显;与相对湿度呈负相关,当相对湿度大于60%时,O_3浓度显著降低;当气压小于1010 hpa时,与气压呈负相关,当气压大于1010 hpa时,与气压呈正相关;当风力为2~3级吹西北偏西至西南偏西风区间时,O_3浓度最高,说明广州偏西部可能存在O_3污染源区;O_3浓度在晴天最高,其次是少云和多云天气,最低是在雨天.总体而言,气温高、日照长、辐射强、气压低、湿度小及2~3级的风力是广州地区近地面产生高浓度O_3的主要气象因素.当广州O_3浓度出现超标时,气温变化范围为25.9~37.4℃,相对湿度变化范围为29%~83%,气压变化范围为989.4~1009.1 h Pa,风速变化范围为0.7~5.8 m·s~(-1),紫外辐射强度日最大1 h均值最小为32.6 W·m~(-2),10:00—14:00均值最小为27.3 W·m~(-2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号