首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha?1. The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.  相似文献   

2.
The study assessed the levels of some heavy metals in soils in the vicinity of a municipal solid waste dumpsite with a view to providing information on the extent of contamination, ecological risk of metals in the soils and human health risk to the residents in Uyo. Soil samples were collected in rainy and dry seasons and analyzed for metals (Pb, Cd, Zn, Mn, Cr, Ni and Fe) using atomic absorption spectrometry. The concentrations of heavy metals (mg/kg) at the dumpsite in rainy season were Pb (9.90), Zn (137), Ni (12.56), Cr (3.60), Cd (9.05) and Mn (94.00), while in dry season, the concentrations were Pb (11.80), Zn (146), Ni (11.82), Cr (4.05), Cd (12.20) and Mn (91.20). The concentrations of metals in the studied sites were higher than that of the control site (P < 0.05). Pollution indices studies revealed that soil samples from dumpsite and distances from 10 and 20 m east of the dumpsite were highly polluted with cadmium. Ecological risk assessment carried out showed that cadmium contributed 98–99 % of the total potentially ecological risk. No probable health risk was observed as the total hazard index of all the metals was less than one. However, children were found to be more susceptible to heavy metal contamination than adult.  相似文献   

3.
Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3–6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children’s urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (r s  = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62–407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (β Q2 = 0.362, 95% CI 0.111–0.542; β Q3 = 0.347, 95% CI 0.103–0.531; β Q4 = 0.314, 95% CI 0.087–0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (β Q2 = 0.236, 95% CI 0.039–0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels.  相似文献   

4.
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil–plant–atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg?1): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China’s Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60–79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.  相似文献   

5.
Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = ?0.70 for As and r = ?0.54 for Cd) and soil respiration (SR) (r = ?0.88 for As and r = ?0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.  相似文献   

6.
The levels, potential sources and ecological risks of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in Yellow River of Henan section, a typical agricultural area in China, were investigated. Surface water samples and suspended particulate matters (SPMs) were collected from 23 sites during two seasons. In wet season, the residues of ∑HCHs (α-HCH, β-HCH, γ-HCH and δ-HCH) and ∑DDTs (p,p′-DDT, o,p′-DDT, p,p′-DDE, p,p′-DDD) ranged from 41.7 to 290 and 4.42 to 269 ng/L in surface water, while those varied from 0.86 to 157 and 1.79 to 96.1 ng/g dw in SPM, respectively. Moreover, in surface water, the levels of HCHs and DDTs in wet season were much higher than those in dry season. The reverse was true for residues of HCHs and DDTs in SPM. Compared with the large rivers in other regions, the levels of HCHs and DDTs in the studied area ranked at high levels and the residual concentrations might cause adverse biological risk, especially for ∑HCHs during wet season. Distributions of HCHs and DDTs delineated that the input of tributaries made a significant effect on the residue of HCHs and DDTs in the mainstream. ∑HCHs in surface water were consist of 26.7 % α-HCH, 30.0 % β-HCH, 37.9 % γ-HCH and 5.45 % δ-HCH and those in SPM contained 5.16 % α-HCH, 22.1 % β-HCH, 60.5 % γ-HCH and 12.2 % δ-HCH on average. Combined with ratios of α-HCH/γ-HCH in surface water (0.70) and in SPM (0.09), the results strongly indicated that lindane was recently used or discharged in the studied area. The mean percentage of DDTs′ isomers were 28.7 % p,p′-DDT, 29.8 % o,p′-DDT, 28.1 % p,p′-DDE and 13.4 % p,p′-DDD in surface water, while those were 12.5 % p,p′-DDT, 31.8 % o,p′-DDT, 30.5 % p,p′-DDE and 25.1 % p,p′-DDD in SPM. The ratios of (DDE + DDD)/∑DDTs and o,p′-DDT/p,p′-DDT revealed that the DDTs in the studied area mainly derived from long-term weathering of technical DDTs residue and the input of dicofol.  相似文献   

7.
To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world’s largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17–106, 17–87, and 3–7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg?1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg?1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg?1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.  相似文献   

8.
The environmental impacts of Boroo gold mine project in Mongolia was evaluated by chemical characterization of trace element concentrations in water, soils and tailing dam sediment samples. The results showed that concentrations of B, Cd, Ni and Se in the water samples were within the accepted levels of the Mongolia water quality standard (MNS4586: 1998). However, the concentrations of Al, As, Cu, Mn, Fe, Pb, U and Zn were higher than the maximum allowable concentration especially in the monitoring and heap leach wells. The average concentrations of As, Cd, Cu, Ni, Pb and Zn in the tailing dam sediment were 4419, 58.5, 56.0, 4.8, 20.6 and 25.7 mg/kg, respectively. Generally, arsenic and heavy metals in the soil samples were within the acceptable concentrations of the soil standard of Mongolia (MNS 5850: 2008). The chemical characterization of As solid phase in tailing dam sediment showed that the majority of As were found in the residual fraction comprising about 74% of total As. Assessing the potential risk to humans, simple bioavailability extraction test was used to estimate bioavailability of arsenic and heavy metals, and the concentrations extracted from tailing dam sediment were; 288.2 mg/kg As, 7.2 mg/kg Cd, 41.1 mg/kg Cu, 13.5 mg/kg Pb, 4.7 mg/kg Ni and 23.5 mg/kg Zn, respectively. From these results, the Boroo gold mine project has presently not significantly impacted the environment, but there is a high probability that it may act as a source of future contamination.  相似文献   

9.
Speciations of metals were assessed in a tropical rain-fed river, flowing through the highly economically important part of the India. The pattern of distribution of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) were evaluated in water and sediment along with mineralogical characterization, changes with different water quality parameters and their respective health hazard to the local population along the Damodar River basin during pre-monsoon and post-monsoon seasons. The outcome of the speciation analysis using MINTEQ indicated that free metal ions, carbonate, chloride and sulfate ions were predominantly in anionic inorganic fractions, while in cationic inorganic fractions metal loads were negligible. Metals loads were higher in sediment phase than in the aqueous phase. The estimated values of Igeo in river sediment during both the seasons showed that most of the metals were found in the Igeo class 0–1 which represents unpolluted to moderately polluted sediment status. The result of partition coefficient indicated the strong retention capability of Cr, Pb, Co and Mn, while Cd, Zn, Cu and Ni have resilient mobility capacity. The mineralogical analysis of sediment samples indicated that in Damodar River, quartz, kaolinite and calcite minerals were dominantly present. The hazard index values of Cd, Co and Cr were >?1 in river water, which suggested potential health risk for the children. A combination of pragmatic, computational and statistical relationship between ionic species and fractions of metals represented a strong persuasion for identifying the alikeness among the different sites of the river.  相似文献   

10.
Productivity of mangrove ecosystems is compromised by anthropogenic activities including over-exploitation of wood. This study set out to understand how different wood harvesting regimes have affected the biodiversity of a tropical ecosystem and to identify relationships between the heavy metal concentrations in the mangrove sediments and tree felling. Soil samples were collected and plant diversity studies carried out on seven sites in the mangrove. Physico-chemical, chemical and mineralogical analyses were done on soil samples and plant population structure, species richness, evenness and diversity index at these sites were calculated. Results showed that soils across sites were characteristically clayey and acidic, with high organic matter content. Minerals identified included quartz, gibbsite, goethite, hematite and kaolinite. Heavy metal concentrations were higher in Sites 6 and 7 with a longer history of anthropogenic activity. There were strong negative correlations between the duration of logging and NO3-N (r = ?0.838, p = 0.019), total N (r = ?0.837, p = 0.019), NH4 +-N (r = ?0.844, p = 0.017), Mg = (?0.789, p = 0.035), K (r = ?0.819, p = 0.024), and Na (r = ?0.988, p = 0.002). Sites which had experienced logging for longer periods (sites 3, 6, and 7) had lower nutrient content and lower values for species richness and diversity index. Logging in mangrove ecosystems could alter soil characteristics, decreasing plant diversity and abundance. Logging dynamics around mangrove ecosystems should be considered in the wider strategy for management and conservation of similar mangrove ecosystems.  相似文献   

11.
Heavy metals, including cadmium (Cd), lead (Pb) and mercury (Hg) act as nephrotoxic agents, particularly in the renal cortex. The aim of the study was to determine the concentrations of Cd, Pb and Hg in kidneys removed from patients due to lesions of various etiologies and from patients after the rejection of transplanted kidneys. Additionally, we determined the influence of selected biological and environmental factors on the concentrations of toxic metals. The study material consisted of kidneys with tumor lesions (n = 27), without tumors (n = 7) and its extracted grafts (n = 10) obtained from patients belongs to the north-western areas of Poland. The determined metal concentrations in the renal cortex and medulla may be arranged in the following descending order: Cd > Pb > Hg. The highest concentrations of Cd and Hg were found in the cortex, while the maximum content Pb was observed in the medulla. Significant correlations were found in the concentrations of the same metals between cortex and medulla and between Pb and Hg in the renal medulla. Pb content was higher in the renal medulla of men than in the cortex of the elderly (above 60 years of age). The highest concentrations of Pb and Hg were found in the cortex and medulla, of the kidneys had not neoplastic changes, and lower content of these metals were found in the extracted kidney grafts. In summary, renal grafts accumulate less heavy metals than cancerous kidneys, what could have been caused by immunosuppressors taken by the graft recipients. Moreover, sex, age and smoking are key factors responsible for xenobiotics concentrations.  相似文献   

12.
What to do about fisheries collapse and the decline of large fishes in marine ecosystems is a critical debate on a global scale. To address one aspect of this debate, a major fisheries management action, the removal of gill nets in 1994 from the nearshore arena in the Southern California Bight (34°26′30″N, 120°27′09″W to 33°32′03″N, 117°07′28″W) was analyzed. First, the impetus for the gill net ban was the crash of the commercial fishery for white seabass (Atractoscion nobilis; Sciaenidae) in the early 1980s. From 1982 to 1997 catch remained at a historically low level (47.8 ± 3.0 mt) when compared to landings from 1936–1981, but increased significantly from 1995–2004 (r = 0.89, P < 0.01) to within the 95% confidence limit of the historic California landings. After the white seabass fishery crashed in the early 1980s, landings of soupfin (Galeorhinus galeus; Triakidae) and leopard shark (Triakis semifasciata; Triakidae) also significantly declined (r = 0.95, P < 0.01 and r = 0.91, P < 0.01, respectively) until the gill net closure. After the closure both soupfin and leopard shark significantly increased in CPUE (r = 0.72, P = 0.02 and r = 0.87, P < 0.01, respectively). Finally, giant sea bass (Stereolepis gigas; Polyprionidae) the apex predatory fish in this ecosystem, which was protected from commercial and recreational fishing in 1981, were not observed in a quarterly scientific SCUBA monitoring program from 1974 to 2001 but reappeared in 2002–2004. In addition, CPUE of giant seabass increased significantly from 1995 to 2004 (r = 0.82, P < 0.01) in the gill net monitoring program. The trends in abundance of these fishes return were not correlated with sea surface temperature (SST), the Pacific Decadal Oscillation (PDO) or the El Niño/Southern Oscillation (ENSO). All four species increased significantly in either commercial catch, CPUE, or in the SCUBA monitoring program after the 1994 gill net closure, whereas they had declined significantly, crashed, or were absent prior to this action. This suggests that removing gill nets from coastal ecosystems has a positive impact on large marine fishes.  相似文献   

13.
Metal releases from the Tri-State Mining District (TSMD) that is located in southwestern Missouri, southeastern Kansas, and northeastern Oklahoma, have contaminated floodplain soils within the Neosho and Spring river watersheds of the Grand Lake watershed. Since the Oklahoma portion of the watershed lies within ten tribal jurisdictions, the potential accumulation of metals within plant species that are gathered and consumed by tribal members, as well as the resulting metal exposure risks to tribal human health, was a warranted concern for further investigation. Within this study, a total of 36 plant species that are commonly consumed by tribes were collected from floodplain areas that were previously demonstrated to have elevated soil metal concentrations relative to reference sites. A significant, positive correlation was shown for metal concentrations in plant tissues versus soil (n = 258; Cd: R = 0.72, p = 0.00; Pb: R = 0.52, p = 0.00; and Zn: R = 0.70, p = 0.00). Additionally, a significant difference in metal concentration distributions existed between reference and impacted plant samples (n = 210, p = 0.00 for all metals). These results proved that floodplain soils are a major contamination pathway for metal accumulation within plants, and the source of metal contamination is the result of mining releases from the TSMD. Metal accumulation within plants was found to vary according to specific metal and plant species. The lowest dietary exposure out of all plant organs sampled were associated with fruit, whereas the highest was associated with roots, stem/leaves, and low-lying leafy greens. Metals in plants were compared to weekly dietary intake limits established by the Joint FAO/WHO Expert Committee on Food Additives. Based on specific serving sizes established within this study for tribal children and adults, many plant species had sufficient concentrations to warrant tribal consumption restrictions within the floodplains of Elm Creek, Grand Lake, Lost Creek, Spring River, and Tar Creek. Importantly, these results highlighted the necessity for the issuance of plant consumption advisories for tribal communities in the watershed. A consumption restriction guide on the number of allowable servings of each species per week at specific streams was developed within this study for tribal children and adults. Results also demonstrated that soil metal concentrations do not need to be exceptionally elevated relative to reference sites in order for plants to accumulate sufficient metal concentrations to exceed dietary limits for one serving. Therefore, the exposure risk associated with the consumption of plants cannot be accurately predicted solely from metal concentrations within soils, but must be based on metal concentrations within specific plant tissues on a site-by-site basis. A weekly consumption scenario was created within this study in order to better understand the potential metal dietary exposures to child and adult tribal members who consume multiple servings of multiple plant species per day, as well as benthic invertebrates and fish from the watershed. These findings demonstrated that plants pose a greater consumption exposure risk for tribal members than benthic invertebrates or fish. Therefore, without the consideration of exposure risks associated with the consumption of plants within future human health risk assessments, tribal health risks will be severely underestimated.  相似文献   

14.
Electrochemically active bacteria (EAB) on the cathodes of microbial electrolysis cells (MECs) can remove metals from the catholyte, but the response of these indigenous EAB toward exotic metals has not been examined, particularly from the perspective of the co-presence of Cd(II) and Cr(VI) in a wastewater. Four known indigenous Cd-tolerant EAB of Ochrobactrum sp X1, Pseudomonas sp X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7 removed more Cd(II) and less Cr(VI) in the simultaneous presence of Cd(II) and Cr(VI), compared to the controls with individual Cd(II) or single Cr(VI). Response of these EAB toward exotic Cr(VI) was related to the associated subcellular metal distribution based on the sensing of fluorescence probes. EAB cell membrane harbored more cadmium than chromium and cytoplasm located more chromium than cadmium, among which the imaging of intracelluler Cr(III) ions increased over time, contrary to the decreased trend for Cd(II) ions. Compared to the controls with single Cd(II), exotic Cr(VI) decreased the imaging of Cd(II) ions in the EAB at an initial 2 h and negligibly affected thereafter. However, Cd(II) diminished the imaging of Cr (III) ions in the EAB over time, compared to the controls with individual Cr(VI). Current accelerated the harboring of cadmium at an initial 2 h and directed the accumulation of chromium in EAB over time. This study provides a viable approach for simultaneously quantitatively imaging Cd(II) and Cr (III) ions in EAB and thus gives valuable insights into the response of indigenous Cd-tolerant EAB toward exotic Cr(VI) in MECs.
  相似文献   

15.
The photolysis of the N methyl carbamate pesticide oxamyl (Z isomer) has been studied in aqueous solution. Continuous irradiation at mainly λ = 254 and λ > 290 nm has been performed to characterise the pesticide photochemical behaviour in water at pH = 6.0. Upon monochromatic irradiation, the phototransformation quantum yield was evaluated to be roughly constant, with a value of 0.54 ± 0.08. Upon polychromatic irradiation, a photochemical efficiency has been estimated to be 0.5 ± 0.1 by using phenol as a reference compound. Two main degradation products were identified: the isomer (E) of oxamyl and the nitrile derivative (N,N-dimethyl-2-nitrilo-acetamide). The photolysis of the oximino derivative, an hydrolysis product of oxamyl, was also studied. Upon irradiation at 254 nm, the quantum yield of phototransformation was found to be 0.28. A unique photoproduct was detected: it corresponds to the (E) isomer of the oximino derivative. For prolonged irradiations, a photostationary state was reached between the oximino and its (E) isomer. From kinetics data, the removal of oxamyl and of the oximino derivative during a UV disinfection step used in drinking water production was calculated to be 45 and 13%, respectively.  相似文献   

16.
Designing environmental monitoring networks to measure extremes   总被引:1,自引:0,他引:1  
This paper discusses challenges arising in the design of networks for monitoring extreme values over the domain of a random environmental space-time field {X ij i = 1, . . . , I denoting site and j = 1, . . . denoting time (e.g. hour). The field of extremes for time span r over site domain i = 1, . . . ,I is given by \(\{Y_{i(r+1)}=\max_{j=k}^{k+n-1} X_{ij}\}\) for k = 1 + rn, r = 0, . . . ,. Such networks must not only measure extremes at the monitored sites but also enable their prediction at the non-monitored ones. Designing such a network poses special challenges that do not seem to have been generally recognized. One of these problems is the loss of spatial dependence between site responses in going from the environmental process to the field of extremes it generates. In particular we show empirically that the intersite covariance Cov(Y i(r+1),Y i′(r+1)) can generally decline toward zero as r increases, for site pairs i ≠ i′. Thus the measured extreme values may not predict the unmeasured ones very precisely. Consequently high levels of pollution exposure of a sensitive group (e.g. school children) located between monitored sites may be overlooked. This potential deficiency raises concerns about the adequacy of air pollution monitoring networks whose primary role is the detection of noncompliance with air quality standards based on extremes designed to protect human health. The need to monitor for noncompliance and thereby protect human health, points to other issues. How well do networks designed to monitor the field monitor their fields of extremes? What criterion should be used to select prospective monitoring sites when setting up or adding to a network? As the paper demonstrates by assessing an existing network, the answer to the first question is not well, at least in the case considered. To the second, the paper suggests a variety of plausible answers but shows through a simulation study, that they can lead to different optimum designs. The paper offers an approach that circumvents the dilemma posed by the answer to the second question. That approach models the field of extremes (suitably transformed) by a multivariate Gaussian-Inverse Wishart hierarchical Bayesian distribution. The adequacy of this model is empirically assessed in an application by finding the relative coverage frequency of the predictive credibility ellipsoid implied by its posterior distribution. The favorable results obtained suggest this posterior adequately describes that (transformed) field. Hence it can form the basis for designing an appropriate network. Its use is demonstrated by a hypothetical extension of an existing monitoring network. That foundation in turn enables a network to be designed of sufficient density (relative to cost) to serve its regulatory purpose.  相似文献   

17.
Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365–488 (69.5 ± 117)] µg L?1 than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14–232 (22.6 ± 41.1)] µg L?1. Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO3 2? (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.  相似文献   

18.
A sustainable means of preventing polluted particulates carried in urban storm water entering rivers, groundwater and lakes is by employing vegetated sustainable drainage system (SUDS) devices, or best management practices to trap or biodegrade them. In the UK, a mixture of grass species is recommended for use in devices such as swales or filter strips. However, there is little evidence in support of the efficiency of the individual grasses or mixtures to deal with such contaminated material. A pot-based pollutant retention study was conducted using processed street dust from central Coventry, UK, as a simulated pollutant to be applied in different quantities to a variety of recommended grasses for vegetated SUDS devices. Analysis was conducted on compost cores, roots and shoots for heavy metals (Cd, Cu, Ni, Pb and Zn). Street dust mainly concentrated in the top compost layer for all grasses with only the finer material migrating down the profile. Analysis of roots indicated little accumulation, with ANOVA statistical tests indicating significant differences in heavy metal concentrations, with less in the compost and more in the shoots. Development of root systems on or near the surface possibly explains increased uptake of heavy metals by some species. Overall Agrostis canina and Poa pratensis showed the greatest accumulations compared to their controls although Agrostis capillaris syn.tenuis and Agrostis stolonifera also demonstrated accumulation potential. On ranking, Agrostis canina and Poa pratensis were highest overall. These rankings will assist in selecting the best grasses to address pollution of the urban environment by contaminated particulates.  相似文献   

19.
Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.  相似文献   

20.
The young leaves of Clethra barbinervis Sieb. et Zucc, which is a deciduous tree species found in secondary forests widely in Japan, are used in spring as a local traditional food by local populations, and the bark of this plant is also preferred by sika deer, Cervus nippon. However, C. barbinervis has been known to accumulate heavy metals in its leaves. Then, we aimed to clarify the characteristics of microelement contents in C. barbinervis and to discuss the value of this species as food for humans and animals through the analysis of seasonal changes and distribution in various organs of C. barbinervis growing under two different geological conditions. We found that C. barbinervis is an accumulating and tolerant plant for Ni, Co and Mn. It accumulates Ni from serpentine soil containing Ni at high concentration, and Co and Mn from acidic soils based on crystalline schist. The seasonal variation in element concentrations in leaves indicates that the young leaves contain Cu at high concentration and that eating them in spring season may be advantageous to humans, due to the associated increase in Cu intake. The high concentrations of Cu and Zn in the bark of C. barbinervis might explain why deer prefer to eat the bark of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号