首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic signals which are used in animal communication must carry a variety of information and are therefore highly flexible. Echolocation has probably such functions and could prove as flexible. Measurable variabitlity can indicate flexibility in a behaviour. To quantify variability in bat sonar and relate to behavioural and environmental factors, I recorded echolocation calls of Euderma maculatum, Eptesicus fuscus, Lasiurus borealis and L. cinereus while the bats hunted in their natural habitat. I analysed 3390 search phase calls emitted by 16 known and 16 unknown individuals foraging in different environmental and behvioural situations. All four species used mainly multiharmonic signals that showed considerable intra- and inter-individual variability in the five signal variables I analysed (call duration, call interval, highest and lowest frequency and frequency with maximum energy) and also in the shape of the sonagram. A nested multivariate analysis of variance identified the influences of individual, hunting site, close conspecifics and of each observation on the frequency with maximum energy in the calls, and on other variables measured. Individual bats differed in multiple comparisons, most often in the main call frequency and least often in call interval. In a discriminant function analysis with resubstitution, 56–76% of a species' calls were assigned to the correct individual. Distinct individual call patterns were recorded in special situations in all species and the size of foraging areas in forested areas influenced temporal and spectral call structure. Echolocation behaviour was influenced by the presence of conspecifics. When bats were hunting together, call duration decreased and call interval increased in all species, but spectral effects were less pronounced. The role of morphometric differences as the source of individually distinct vocalizations is discussed. I also examined signal adaptations to long range echolocation and the influence of obstacle distance on echolocation call design. My results allow to discuss the problems of echo recognition and jamming avoidance in vespertilionid bats.  相似文献   

2.
The echolocation calls used by Nyctalus leisleri during search phase in open air space are between 9 and 14 ms long, with the peak energy between 24 and 28 kHz. The pulses are shallowly frequency-modulated with or without an initial steep frequency-modulated component. The diet consists primarily of small flies (Diptera), including many chironomids (wingspan 9–12 mm) and yellow dung flies (Scatophaga; wingspan 24 mm), but also of some larger insects such as dung beetles (Coleoptera; Scarabaeoidea), caddis-flies (Trichoptera) and moths (Lepidoptera). The echo target strength of some prey items was measured. Contrary to models based on standard targets such as spheres or disks, the echo strength of real insects was found to be virtually independent of the emitted frequency within the 20–100 kHz frequency range. A model was used to calculate probable detection distances of the prey by the bat. Using narrow-band calls of 13.7 ± 2.7 ms duration, a bat would detect the two smallest size classes of insect at greatest range using calls of 20 kHz. The results may therefore explain why many species of large and medium sized aerial-hawking bats use low-frequency calls and still eat mostly relatively small insects. The data and model challenges the assumption that small prey are unavailable to bats using low-frequency calls.  相似文献   

3.
Contact calls are utilized by several bird and mammal species to maintain group cohesion and coordinate group movement. From a signal design perspective, contact calls typically exhibit acoustic features that make them easily localizable and encode information about individual or group identity. Pallid bats (Antrozous pallidus) are unusual among vespertilionids in that they often emit a loud, partially audible frequency-modulated social call several times in rapid succession while in flight. This call appears to function as a contact call in that it is frequently given when bats return from foraging and perform circular flights before entering a crevice roost. However, the degree to which pallid bats respond to the calls of conspecifics and what information is provided in the call is unknown. Thus, the goal of this study was to investigate pallid bat calling behavior to determine if calls attract roostmates or elicit responses from them and provide sufficient information for individual recognition. In playback studies, we found that contact calls, elicit calls, and approaches and that free-flying bats respond more to familiar than unfamiliar calls. In addition, analysis of frequency and temporal measurements of calls collected from multiple sites and spectral cross correlation analysis of calls recorded from the same radio-tagged bats on multiple evenings revealed that the frequency pattern of contact calls is highly repeatable over time within individuals but exhibits significant differences among individuals. Thus, contact call structure appears to be unique to individuals and stable through time, which makes these calls well-suited for roostmate recognition.  相似文献   

4.
Bats produce echolocation signals that reflect the sensory tasks they perform. In open air or over water, bats encounter few or no background echoes (clutter). Echolocation of such bats is the primary cue for prey perception and varies with the stage of approach to prey, typically comprising search, approach, and terminal group calls. In contrast, bats that glean stationary food from rough surfaces emit more uniform calls without a distinct terminal group. They use echolocation primarily for orientation in space and mostly need additional sensory cues for finding food because clutter echoes overlap strongly with food echoes. Macrophyllum macrophyllum is the only Neotropical leaf-nosed bat (Phyllostomidae) that hunts in clutter-poor habitat over water. As such, we hypothesized that, unlike all other members of its family, but similar to other trawling and aerial insectivorous bats, M. macrophyllum can hunt successfully by using only echolocation for prey perception. In controlled behavioral experiments on Barro Colorado Island, Panamá, we confirmed that echolocation alone is sufficient for finding prey in M. macrophyllum. Furthermore, we showed that pattern and structure of echolocation signals in M. macrophyllum are more similar to aerial and other trawling insectivorous bats than to close phylogenetic relatives. Particularly unique among phyllostomid bats, we found distinct search, approach, and terminal group calls in foraging M. macrophyllum. Call structure, however, consisting of short, multiharmonic, and steep frequency-modulated signals, closely resembled those of other phyllostomid bats. Thus, echolocation behavior in M. macrophyllum is shaped by ecological niche as well as by phylogeny.  相似文献   

5.
Echolocating bats adjust the time–frequency structure such as sweep rate and pulse interval of their sonar calls when they move from open space to vegetation-dense environments. Emitted call intensity is equally important for echolocation, but adjustment of signal intensity to different habitats has never been systematically studied in any bat species. To address this question, we recorded sonar calls of the Neotropical trawling insectivorous bat Macrophyllum macrophyllum (Phyllostomidae) at three sites with different obstacle densities (clutter). We found a clear correlation between emitted intensity and degree of clutter, with intensity proportional to decreasing clutter. In highly cluttered, semicluttered, and open spaces, M. macrophyllum emitted calls with mean source levels (sound pressure level (SPL) 10 cm from the bat’s mouth) of 100, 105, and 111 dB SPL root mean square (rms), respectively. To our knowledge, this is the first documentation of dynamic intensity adjustments in bats. Phyllostomid bats were previously considered silent, but the 111-dB SPL rms emitted by free-ranging M. macrophyllum in open space is comparable to output in aerial insectivorous bats from other families. Our results suggest that the acoustic constraints of habitats are better predictors of call intensity than phylogeny and therefore likely to be major drivers shaping the sonar system of bats in the course of evolution.  相似文献   

6.
We studied the role of echolocation and other sensory cues in two small frugivorous New World leaf-nosed bats (Phyllostomidae: Artibeus watsoni and Vampyressa pusilla) feeding on different types of fig fruit. To test which cues the bats need to find these fruit, we conducted behavioral experiments in a flight cage with ripe and similar-sized figs where we selectively excluded vision, olfaction, and echolocation cues from the bats. In another series of experiments, we tested the discrimination abilities of the bats and presented sets of fruits that differed in ripeness (ripe, unripe), size (small, large), and quality (intact(infested with caterpillars). We monitored the bats' foraging and echolocation behavior simultaneously. In flight, both bat species continuously emitted short (<2 ms), multi-harmonic, and steep frequency-modulated (FM) calls of high frequencies, large bandwidth, and very low amplitude. Foraging behavior of bats was composed of two distinct stages: search or orienting flight followed by approach behavior consisting of exploration flights, multiple approaches of a selected fruit, and final acquisition of ripe figs in flight or in a brief landing. Both bat species continuously emitted echolocation calls. Structure and pattern of signals changed predictably when the bats switched from search or orienting calls to approach calls. We did not record a terminal phase before final acquisition of a fruit, as it is typical for aerial insectivorous bats prior to capture. Both bat species selected ripe over unripe fruit and non-infested over infested fruit. Artibeus watsoni preferred larger over smaller fruit. We conclude from our experiments, that the bats used a combination of odor-guided detection together with echolocation for localization in order to find ripe fruit and to discriminate among them.  相似文献   

7.
1.  Five species of emballonurid bats (Rhynchonycteris naso, Saccopteryx leptura, Balantiopteryx plicata, Saccopteryx bilineata, and Peropteryx kappleri), were studied in Costa Rica and Trinidad. Stomach contents suggest that prey size generally increases for bat body size, but within these species there is considerable overlap. R. naso, S. leptura, and P. kappleri each appear to be specialized for foraging in a particular habitat type; B. plicata and S. bilineata are more opportunistic and feed over a variety of habitats during the year. While the other species feed in the proximity of surfaces, B. plicata is further separated from the other species by wing specializations favoring high altitude flight.
2.  Foraging dispersion is more closely related to body size than it is to social structure at the roost: small bats group-forage while larger bats feed in solitary beats. In all of the species, food is spatially and temporally variable, and the location of foraging sites changes seasonally in accordance with these locally varying patterns of aerial insect abundance. In the case of S. bilineata, the locations of foraging sites were positively correlated with levels of phenological activity in the underlying plant communities.
3.  Colony sizes ranged from small groups of 2–10 bats (S. leptura, P. kappleri), to intermediate colonies of 5–50 bats (R. naso, S. bilineata), to very large colonies with hundreds of bats (B. plicata).
4.  R. naso, S. leptura, and S. bilineata colonies have colony-specific annual foraging ranges which are actively defended against conspecifics from other colonies. In most cases, all members of a given colony of one of these species will be found foraging in a common site at any time. In R. naso and S. bilineata, currently used foraging sites are partitioned socially. In the former species, adult breeding females occupy a central area and groupforage while younger non-breeding females and males occupy peripheral foraging areas in the colony territory. In S. bilineata, the colony foraging site is partitioned into individual harem territories defended by harem males and containing the individual beats of all current harem females. For this latter species, details of roost site subdivision are mapped directly onto foraging dispersions. In general, there is a close correlation between dayroost group membership and location of nocturnal foraging sites in all of the study species.
  相似文献   

8.
Mutual recognition is the product of species coexistence, and has direct effects on survival and reproduction of animals. Bats are able to discriminate between sympatric different heterospecifics based on their echolocation calls, which has been shown both in free-flying and captive bats. To date, however, the factors that may determine the behavioral responses of bats to echolocation calls from sympatric heterospecifics have rarely been tested, especially under well-controlled conditions in captive bats. Hence, we aimed at tackling this question by performing playback experiments (habituation–dishabituation) with three horseshoe bat species within the constant-frequency bat guild, which included big-eared horseshoe bats (Rhinolophus macrotis), Blyth’s horseshoe bats (Rhinolophus lepidus), and Chinese horseshoe bats (Rhinolophus sinicus). We studied the behavioral responses of these three species to echolocation calls of conspecifics, to other two species, and to another heterospecifics bat, Stoliczka’s trident bat (Asellisus stoliczkanus), which also belongs to this guild. We found that the three rhinolophid species displayed a series of distinct behaviors to heterospecific echolocation but few to conspecific calls after habituation, suggesting that they may have been able to discriminate sympatric heterospecific echolocation calls from those of conspecifics. Interestingly, the behavioral responses to heterospecific calls were positively correlated with the interspecific overlap index in trophic niche, whereas call design had only a minor effect. This implies that the behavioral responses of these bats to heterospecific echolocation calls may be related to the degree of interspecific food competition.  相似文献   

9.
Recent evidence suggests that tropical bats may frequently depart from the predominant mammalian male-biased dispersal pattern. So far, two emballonurid bat species that are closely related to our study species (Grey sac-winged bat, Balantiopteryx plicata) have been found to exhibit exceptional female-biased dispersal that is in accordance with father–daughter inbreeding avoidance. In contrast, using a combination of long-term behavioral observations of banded bats and DNA sequencing of the mitochondrial d-loop, our results suggest that B. plicata is the first Neotropical emballonurid with female philopatry and frequent male dispersal. However, just like in the other emballonurids, the age of females at first conception fell below the tenure of males. Thus, philopatric B. plicata females might face a father–daughter inbreeding risk if mating with males from their roosts. Such risk could be circumvented if mating occurs outside the nursing roost, e.g., in male mating aggregations. In contrast to other Neotropical emballonurid bats, the Grey sac-winged bat forms colonies with a greatly male-biased sex ratio (only 5 and 21 % females). Males of such colonies showed high roost fidelity and the sex ratio did not change throughout the year and for up to many years, suggesting an important role in mating. We conclude that studying the diverse mating and dispersal patterns of Neotropical emballonurids shows great potential to enlarge our understanding on how the proposed ultimate causes (i.e., avoidance of inbreeding and local competition between kin) affect the evolution of sex-biased dispersal.  相似文献   

10.
Summary Male treefrogs, Smilisca sila (Hylidae), produce calls of varying complexity and demonstrate a remarkable ability to synchronize their calls with those of neighbors. The bat Trachops cirrhosus eats frogs and uses the frogs' advertisement calls as locational cues. The bats are less likely to respond to synchronous calls than to asynchronous calls, and when given a choice prefer complex calls to simple calls.Experiments with bat models indicate that, like other frogs, S. sila probably uses visual cues to detect hunting bats. In response to bat models the frogs decreased both the number and the complexity of their calls. The calling behavior of the frogs was sampled in the field during periods with and without artificial illumination. The frogs produced fewer and less complex calls, and they tended to call from more concealed sites, during the period without illumination, when presumably it would have been more difficult for the frogs to detect hunting bats. S. sila tended to call from sites with higher ambient noise level, the noise primarily originating from waterfalls. The frequencies of the dominant energies in the waterfall sounds completely overlapped the frequency range of the S. sila call; thus waterfalls might mask the frog calls. When given a choice between calls produced near and away from waterfall sounds, bats preferred the latter.  相似文献   

11.
Saccopteryx bilineata has a polygynous mating system in which males defend females in a harem territory. Harem defense and courtship include energetically costly flight maneuvers and hovering displays. We tested if (1) harem males have a greater field metabolic rate than non-harem males or females and if (2) the field metabolic rate of harem males is correlated with the number of females in a harem territory. We measured the energy budget in 32 S. bilineata with the doubly labeled water method and compared these estimates with behavioral observations in the daytime roost. Among adult bats, field metabolic rate varied with body mass by an exponent of approximately two. We found no significant difference in field metabolic rate or mass-specific field metabolic rate between harem and non-harem males. The mass-specific field metabolic rate of harem-males increased with harem size. The latter finding supports the hypothesis that the energy costs of courtship display and territorial defense influence the energy budget of harem males. Overall, field metabolic rates of S. bilineata were lower than those of similarly sized bats of the temperate zone and only 2.3 times above the basal metabolic rate recorded for this species. We suggest that male S. bilineata did not take advantage of their metabolic capacity because a prudent allocation of energy to activities of harem maintenance is an adaptive strategy for males in this mating system.  相似文献   

12.
Many bat species regularly need to find new day roosts as they require numerous shelters each breeding season. It has been shown that bats exchange information about roosts among colony members, and use echolocation and social calls of conspecifics in order to find roosts. However, it is unclear if wild bats discriminate between social calls of conspecifics and other bat species while searching for roosts. Furthermore, the extent that bats are attracted to potential roosts by each of these two call types is unknown. We present a field experiment showing that social calls of conspecifics and other bat species both attract bats to roosts. During two summers, we played back social calls of Bechstein’s bats (Myotis bechsteinii) and Natterer’s bats (Myotis nattereri) from different bat boxes that can serve as roosts for these species. All experimental bat boxes were monitored with infrared video to identify the approaching bat species. Three species (M. bechsteinii, M. nattereri, and Plecotus auritus) approached the boxes significantly more often during nights when bat calls were played compared to nights without playbacks. Bechstein’s bats and Natterer’s bats were both more attracted to social calls of conspecifics than of the other species, whereas P. auritus did not discriminate between calls of either Myotis species. Only Bechstein’s bats entered experimental boxes and only at times when calls from conspecifics were played. Our findings show that wild bats discriminate between social calls of conspecifics and other bat species although they respond to both call types when searching for new roosts.  相似文献   

13.
The literature suggests that in familiar laboratory settings, Indian false vampire bats (Megaderma lyra, family Megadermatidae) locate terrestrial prey with and without emitting echolocation calls in the dark and cease echolocating when simulated moonlit conditions presumably allow the use of vision. More recent laboratory-based research suggests that M. lyra uses echolocation throughout attacks but at emission rates much lower than those of other gleaning bats. We present data from wild-caught bats hunting for and capturing prey in unfamiliar conditions mimicking natural situations. By varying light level and substrate complexity we demonstrated that hunting M. lyra always emit echolocation calls and that emission patterns are the same regardless of light/substrate condition and similar to those of other wild-caught gleaning bats. Therefore, echoic information appears necessary for this species when hunting in unfamiliar situations, while, in the context of past research, echolocation may be supplanted by vision, spatial memory or both in familiar spaces.Communicated by T. Czeschlik  相似文献   

14.
Summary The echolocation and hunting behavior of two very small bats, Craseonycteris thonglongyai (Hill) and Myotis siligorensis (Horsfield), from Thailand, were investigated using multiflash photographs, video, and high-speed tape recordings with a microphone array that allowed determination of distance and direction to the bats. C. thonglongyai is the world's smallest mammal and M. siligorensis is only slightly larger. Both bats hunted insects in open areas. The search signals of C. thonglongyai were 3.5 ms long multiharmonic constant frequency (CF) signals with a prominent second harmonic at 73 kHz repeated at around 22 Hz. The band width (BW) of the short terminal frequency modulated (FM) sweep increased during the very short approach phase. In the final buzz the CF component disappeared, the duration decreased to 0.2 ms, and the repetition rate increased to 215 Hz (Figs. 2, 3, 4). There was no drop in frequency in the buzz. The video recordings of C. thonglongyai indicated that it seizes insects directly with the mouth (Fig. 1). M. siligorensis produced 5.4 ms long CF search signals at 66 kHz. The repetition rate was around 13 Hz. In the approach phase an initial broad band FM sweep was added. The buzz consisted of two phases, buzz I and buzz II. Buzz 11 was characterized by short cry durations (around 0.3 ms), a constant high repetition rate (185 Hz), a distinct drop in frequency, and a prominent second harmonic (Figs. 5, 6, 7). The drop in frequency, apparently typical of vespertilionid bats, has been explained by physiological limitations in sound production. However, C. thonglongyai produced very short signals at very high repetition rates without any frequency drop. The drop may be of adaptive value since it enables M. siligorensis to produce very short signals with high sweep rates. The drop moves the pronounced second harmonic into the frequency range of most interest to the bat (Fig. 7D). The sweep rate in this frequency range may now increase to twice the maximum rate that the vocal cords can produce directly. C. thonglongyai and M. siligorensis belong to different superfamilies, Emballonuroidea and Vespertilionoidea, respectively. In spite of their phylogenetic distance they produce strikingly similar search signals of narrow BW around 70 kHz with high source levels (100–115 dB peSPL peak equivalent sound pressure level). We argue that the signal resemblance is due to the similarity in size and hunting behavior of the two bats both hunting insects in open areas. High frequencies are heavily attenuated in air, but because of their small size the bats are restricted to hunting small insects which only reflect echoes at high frequencies. Thus, the emitted frequency is probably the lowest possible given the prey size. Hence, the two bats can only maximize the range of their sonar by decreasing the BW and emitting high intensities. Correspondence to: A. Surlykke  相似文献   

15.
Fin whales (Balaenoptera physalus) produce a variety of low-frequency, short-duration, frequency-modulated calls. The differences in temporal patterns between two fin whale call types are described from long-term passive acoustic data collected intermittently between 2005 and 2011 at three locations across the eastern North Pacific: the Bering Sea, off Southern California, and in Canal de Ballenas in the northern Gulf of California. Fin whale calls were detected at all sites year-round, during all periods with recordings. At all three locations, 40-Hz calls peaked in June, preceding a peak in 20-Hz calls by 3–5 months. Monitoring both call types may provide a more accurate insight into the seasonal presence of fin whales across the eastern North Pacific than can be obtained from a single call type. The 40-Hz call may be associated with a foraging function, and temporal separation between 40- and 20-Hz calls may indicate the separation between predominately feeding behavior and other social interactions.  相似文献   

16.
Summary 1. Echolocation and foraging behavior of the horseshoe bats Rhinolophus ferrumequinum and R. hipposideros feeding under natural conditions are described. 2. The calls of both species consisted predominantly of a long CF segment, often initiated and terminated by brief FM sweeps of substantial bandwidth. 3. R. hipposideros typically flew close to vegetation, and fed by aerial hawking, gleaning and by pouncing on prey close to the ground. R. hipposideros called with a CF segment close to 112 kHz which is the second harmonic of the vocalization; its calls included low intensity primary harmonics, and had prominent initial and terminal FM sweeps of considerable bandwidth. When searching for prey on the wing it had longer interpulse intervals than R. ferrumequinum, but emitted shorter pulses at a higher repetition rate; overall it had a similar duty cycle to R. ferrumequinum. 4. R. ferrumequinum, calling with a CF segment close to 83 kHz, also used harmonics other than the dominant secondary in its calls, and modified its echolocation according to ecological conditions. This species showed certain parallels with R. rouxi of Asia. It was observed feeding by aerial hawking and by flycatching. When scanning for prey from a perch (perch hunting), calls were of shorter duration, and interpulse intervals were on average longer, than when bats were flying. Mean duty cycle was longer in flight, and the bandwidths and frequency sweep rates of the FM segments in the calls increased in comparison with perched bats. 5. FM information may facilitate determination of target range and the location and nature of obstacles; it may also be involved in the interpretation of echoes and the detection of moving targets among clutter. The rising FM sweep initiating the call in both species when flying (and to a lesser extent perch hunting) in the wild must have a significant adaptive role, and should be considered an essential component of the call; rhinolophids should be termed FM/CF/FM bats.Abbreviations CF constant frequency - FM frequency modulated - FM1 initial rising frequency sweep - FM2 terminal falling frequency sweep - PRR pulse repetition rate - SD standard deviation - SNR signal-to-noise ratio  相似文献   

17.
The fringe-lipped bat, Trachops cirrhosus, is an eavesdropping predator that hunts frogs and katydids by approaching these preys' sexual advertisement calls. In captivity, bats can rapidly learn to associate novel acoustic stimuli with food rewards. It is unknown how this learning ability is related to foraging behavior in the wild where prey and the calls that identify them vary over space and time. In two bat populations that differ in available prey species (Soberanía, Panama, and La Selva, Costa Rica), we presented wild-caught bats with frog calls, katydid calls, and control stimuli. Bats in Soberanía were significantly more responsive to complex calls and choruses of the túngara frog, Physalaemus pustulosus, than were bats in La Selva. La Selva bats were significantly more responsive to katydid calls (Steirodon sp.) than Soberanía bats. We also examined seasonal variation in bat response to prey cues. Bats were captured in Soberanía in dry and wet seasons and presented with the calls of a dry season breeding frog (Smilisca sila), a wet season breeding frog (P. pustulosus), and four katydid species. Bats captured in the dry season were significantly more responsive to the calls of S. sila than bats captured in the wet season, but there were no seasonal differences in response to the calls of P. pustulosus or the katydid calls. We demonstrate plasticity in the foraging behavior of this eavesdropping predator but also show that response to prey cues is not predicted solely by prey availability.  相似文献   

18.
Interindividual use of echolocation calls: Eavesdropping by bats   总被引:4,自引:0,他引:4  
Summary The use of other individual's echolocation calls by little brown bats, Myotis lucifugus, was tested by observing the response of free-flying bats to presentations of recorded echolocation calls and artificial sounds. Bats responded by approaching conspecific calls while searching for food, night roosts, nursery colonies and mating/hibernation sites. Response was low or non-existant to other sounds. While searching for prey, M. lucifugus also responded to the echolocation calls of Eptesicus fuscus, a sympatric species with overlapping diet but distinctly different echolocation calls. Subadults were especially responsive to conspecific calls.All four situations in which the bats responded involve patchily distributed resources at which bats accumulate. Concentrations of echolocation calls thus likely serve as cues regarding the location of resources. Individuals approaching feeding groups, for example, could increase prey detection range by up to 50 times over individuals relying solely on their own echolocation.Although the costs associated with eavesdropping may be negligible for M. lucifugus, for other species, particularly territorial ones, being conspicuous may be a disadvantage and the possibility of being over-heard by other bats may have been one factor involved in the evolution of echolocation call design.  相似文献   

19.
The acoustic behaviour of Eptesicus serotinus was investigated in the field using a 13.5-m vertical, linear microphone array that allowed for simultaneous recordings at three different heights and for the calculation of flight altitude and distance from the array. Recordings were made at two locations that differed in bat species diversity. E. serotinus hunted on average at an altitude of 10.7 m (±2.7) at one location and 6.8 m (±3.6) at the other location. Search signals were 5–17 ms long depending on flight altitude, and consisted of two to three frequency-modulated harmonics. For bats flying below 8–10 m altitude, signal duration decreased with decreasing flight altitude, whereas signal interval, terminal frequency, peak frequency and frequency range of the first harmonic increased. Above 8–10 m flight altitude, the signal parameters were fairly constant. The –10 dB bandwidth and duty cycle did not change with flight altitude. Source levels were calculated to between 121 and 125 dB peSPL re 20 μPa at 10 cm. For bats flying higher than 9 m, the microphone placed 1.5 m above the ground recorded significantly reduced signal durations and frequency ranges of the first harmonic compared to the same signals recorded with the microphones at heights of 7 or 15 m. We caution the use of ground recordings to fully describe the echolocation signals of high-flying bats. We demonstrate that flight altitude significantly influences the structure of sonar signals from E. serotinus. Received: 17 May 1999 / Received in revised form: 20 September 1999 / Accepted: 25 September 1999  相似文献   

20.
We studied the echolocation and foraging behavior of two Neotropical frugivorous leaf-nosed bats (Carollia perspicillata, C. castanea: Phyllostomidae) in a flight cage. To test which cues Carollia uses to detect, identify, and localize ripe Piper fruit, their preferred natural food, we conducted experiments under semi-natural conditions with ripe, unripe, and artifical fruits. We first offered the bats ripe fruits and documented their foraging behavior using multiflash stereophotography combined with simultaneous sound recordings. Both species showed a similar, stereotyped foraging pattern. In searchflight, the bats circled through the flight cage in search of a branch with ripe fruit. After finding such a branch, the bats switched to approach behavior, consisting of multiple exploration flights and the final approach when the bats picked up the fruit at its tip and tore it off in flight. Our behavioral experiments revealed that odor plays an important role in enabling Carollia to find ripe fruit. While foraging, Carollia always echolocated and produced multiharmonic, frequency-modulated (FM) signals of broad bandwidth, high frequency, short duration, and low intensity. We discriminated an orientation phase (mostly a single pulse per wingbeat) and an approach phase (groups of two to six pulses per wing beat). We conclude from the bats' behavioral reaction to real and artificial fruit as well as from characteristic patterns in their echolocation behavior that during exploration flights, Carollia changes from primarily odor-oriented detection and initial localization of ripe fruit to a primarily echo-oriented final localization of the position of the fruit. Received: 27 March 1997 / Accepted after revision: 28 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号