首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Mature grafts of five Sitka spruce (Picea sitchensis (Bong.) Carr.) clones were exposed to simulated acid mist comprising an equimolar mixture of H(2)SO(4) and NH(4)NO(3) (1.6 and 0.01 mol m(-3)) at pH 2.5 and 5.0. Mist was applied to potted plants growing in open-top chambers on consecutive days, four times a week, at a precipitation equivalent of 1 mm per day. The total exposure to polluted mist was equivalent to three times that measured at an upland forest in SE Scotland. The aim of the experiment was to characterize the response of juvenile foliage produced by physiologically mature grafts (on seedling root stock) and compare it with the behaviour of juvenile foliage on seedlings. Development of visible foliar damage was followed through the growing season. Measurements of needle length, diameter, weight, surface area, surface was weight and wettability were made on current year needles to determine whether particular foliar characteristics increased susceptibility to injury. Significant amounts (> 10%) of visible needle damage was observed on only one of the five clones. Damage was most severe on the clone with the most horizontal branch and needle habit, but over the five clones there was no relationship between angle of branch display and damage. Likewise no combination of needle characteristics (length, width, area, amount of wax) was indicative of potential susceptibility. A comparison with previous acid misting experiments using seedlings suggests that juvenile foliage on physiologically mature trees is equally susceptible to visible injury as juvenile seedling foliage. Data of budburst differed among clones, and in this experiment exerted the over-riding influence on development of injury symptoms. Foliage exposed to a combination of strong acidity and high sulphate concentrations over the few weeks immediately following budburst suffered most visible injury. The absence of significant amounts of visible damage in UK forests probably reflects the general low susceptibility to visible injury of Sitka spruce exposed to acid mist.  相似文献   

2.
Sitka spruce seedlings grown in pots of compost in open-top chambers (OTCs) or outside, in an agricultural loam soil, in different years, were treated with pH 2.5 acid mist comprising an equimolar solution, of H2SO4 and NH4NO3 at 1.6 mol m−3. The effects of rain, and frequency of acid mist applications on visible injury, nutrition and frost hardiness were evaluated in the OTC experiment. Similar evaluations were undertaken in the field where application frequency was dependent on windspeed, rain and direct sunlight. Rain washing significantly ameliorated the effect of acid mist on frost hardiness in OTCs. In the field experiment there was no effect of acid mist treatment. Increasing the frequency of misting in OTCs for the same exposure exacerbated the detrimental effects of acid mist, causing both visible damage and further increasing the sensitivity of the acid treated trees to freezing temperatures. The results show that the treatment environment can both ameliorate and exacerbate treatment effects.  相似文献   

3.
An eighteen-year-old clone of Sitka spruce (Picea sitchensis (Bong.) Carr) growing in the field was used to evaluate the whole tree response of 'mature' Sitka spruce to acid mist treatment. The mist, an equimolar mixture of H(2)SO(4) and NH(4)NO(3) at pH 2.5 with or without particles (soda glass ballotini < 20 microm diameter), was applied twice weekly (equivalent to 4 mm precipitation week(-1)) throughout the growing season, May-November 1990-1992. The annual dose of S, N, H applied as mist (at 51, 48 and 3.3 kg ha(-1), respectively) was 2.5 times that measured in the Scottish uplands. Throughout the experiment there was no evidence of visible injury symptoms, yet there was a highly significant reduction (p < 0.02) in the stem-area increment relative to the stem area at the start, measured using vernier dendrometer bands. There was no significant difference between the (acid mist + particle) and the acid mist only treatments. The mean relative stem-area increment over two complete growing seasons (1991-1992) was 65% for control trees, but only 53% for acid-misted trees.  相似文献   

4.
The needles of clonal Norway spruce grown in environmental chambers on two different soils (an acidic soil 1 and a calcareous soil 2) and exposed to two levels of ozone fumigation (a low level combined with neutral mist = control, and an elevated one combined with acid mist = treatment) were analyzed for their frost hardiness. No effect of ozone was observed on either the development of frost resistance during the hardening phase or on the decrease in frost resistance during the dehardening phase. The preliminary results of Brown et al. (1987) and Barnes and Davidson (1988), which indicated that ozone treatment predisposes plants to winter injury, could thus not be confirmed. Frost resistance was, however, distinctly influenced by the content of the mineral nutrients of the soils. The pronounced K(+) deficiency of the needles of the trees growing on the neutral soil (Alps) had less effect on the development of frost resistance than did the Ca(++) and Mg(++) deficiency of the needles of the trees grown on the acidic soil 1 (Bavarian Forest). The variability of frost resistance between the different clones on soil 1 was partly attributed to fluctuations in the mineral nutrient content of the needles, rather than to a genetic predisposition.  相似文献   

5.
The nutrient contents of an acid and a calcareous soil, as well as the foliar contents of four clones of Norway spruce grown on these soils, were evaluated during a 14-month exposure to low level ozone (100 microg m(-3) + peaks between 130 and 360 microg m(-3)) plus acid mist (pH 3.0). Whilst distinct differences could be established between and within clones depending on soil types and genotype, only few pollutant-related effects were observed. Leaching losses from foliage were generally low compared to field studies. The data obtained with young trees in an artificial environment do not support the hypothesis that enhanced leaching from foliage may contribute to nutrient deficiencies in mature stands of Norway spruce.  相似文献   

6.
Two-year-old beech and Norway spruce seedlings were exposed to a combination of ozone and acid mist treatments in open-top chambers in Scotland during the months of July through to September 1988. Replicate pairs of chambers received charcoal-filtered air (control), ozone-enriched air (140 nl ozone litre(-1)) or 140 nl ozone litre(-1) plus a synthetic acid mist (pH 2.5) composed of ammonium nitrate and sulphuric acid. Field measurements of assimilation and stomatal conductance were made during August. In addition, measurements of assimilation and conductance were made during September in the laboratory. Light response curves of assimilation and conductance were determined using a GENSTAT nonrectangular hyperbolic model. During February 1988/9 the Norway spruce were subject to a four day warming period at 12 degrees C and the light response of assimilation determined. The same plants were then subject to a 3-h night-time frost of -10 degrees C. The following day the time-course of the recovery of assimilation was determined. It was found that ozone fumigation did not influence the light response of assimilation of beech trees in the field, although stomatal conductance was reduced in the ozone-fumigated trees. The rate of light-saturated assimilation of Norway spruce was increased by ozone fumigation when measured in the field. Measurements of assimilation of Norway spruce made during the winter showed that prior to rewarming there was no difference in the rate of light-saturated assimilation for control and ozone-fumigated trees. However, the ozone plus acid mist-treated trees exhibited a significantly higher rate. The 4-day period of warming to 12 degrees C increased the rate of light-saturated assimilation in all treatments but only the ozone plus acid mist-treated trees showed a significant increase. Following a 3-h frost to -10 degrees C the control trees exhibited a reduction in the rate of light-saturated assimilation (Amax) to 80% of the pre-frost value. In comparison, following the frost, the ozone-fumigated trees showed an Amax of 74% of the pre-frost value. The ozone plus acid mist-treated trees showed an Amax of 64% of the pre-frost trees. The time taken for Amax to attain 50% of the pre-frost value increased from 30 min (control) to 85 min for ozone-fumigated trees to 190 min (ozone plus acid mist). These results are discussed in relation to the impact of mild, short-term frosts, which are known to occur with greater frequency than extreme, more catastrophic frost events. A simple conceptual framework is proposed to explain the variable results obtained in the literature with respect to the impact of ozone upon tree physiology.  相似文献   

7.
The influence of an ozone + acid mist treatment on photosynthetic pigments has been examined with the needles of the (Picea abies) clones 11, 14, 16, and 133 by spectrophotometric analysis of the total pigment extract and of single components upon HPLC separation (Part A), and in terms of a detailed pigment analysis of the 1987 and 1986 needles of clone 14 by TLC (Part B). Clone 14 had been already analysed prior to the onset of the experiment. At the end of the 14-month experiment, which incorporated frost events during a simulated winter period, neither symptoms corresponding to those of spruce Type I or IV decline, nor those of ozone damage could be observed. However, the 1986 needles of the trees on soil 1, which exhibit an adequate nutrient content, showed zonal chlorosis independently of the ozone + acid mist treatment. Analysis of variance of chlorophyll contents and needle ages showed a clear reduction to nearly 50% in the 1986 needles of clone 11, soil 1, and clone 16, soil 2. In contrast, clones 14 and 16 (soil 1) formed significantly more chlorophylls during the shorter exposure time in the 1987 flush. The detailed analysis of the individual pigment components of clone 14 needles provided no evidence for a destructive influence of the treatment on the chlorophylls, xanthophylls and beta-carotene in the two needle generations which had developed during the experiment, in spite of the distinct K deficiency of the 1986 needles of the trees on soil 2 and the common chlorosis of the needles of the trees on soil 1. The observed increase in violaxanthin content upon O(3)-treatment observed in clone 14 can be considered as an expression of the protective function of the xanthophylls against photooxidative processes. In conclusion, the observed differences in the chlorophyll and carotenoid contents are better correlated with the individual clone and soil character than with the ozone + acid mist treatment. Comparing the results of the pigment analyses of the needles the differences in the pigment concentrations reflect the N and K contents (Pfirrmann et al., 1990), which differ significantly between the clones. Thus it is not possible to pool the pigment data of all clones without considering the different nutrient levels.  相似文献   

8.
Seedlings of birch and Sitka spruce were grown on a range of British soils for 2 years and exposed to simulated acid rainfall treatments of pHs 5.6, 4.5, 3.5 and 2.5. Both species developed visible leaf injury patterns when exposed to the pH 2.5 treatment. In Sitka spruce this leaf injury was followed by high needle loss during the first winter and greater mortality. Generally, height growth of Sitka spruce was unaffected by treatments, but acid rainfall at pH 2.5 increased the height of birch. Mean height of both species was strongly affected by soil type. Significant soils x treatment effects on the heights of both species indicated that on some soils plant growth responses to the treatments did not fit the general pattern. Hence, while the results indicate that generally ambient acidities of rainfall in the UK are unlikely to adversely affect the growth of birch or Sitka spruce, plants growing on some soils may be susceptible to injury.  相似文献   

9.
Norway spruce seedlings were sprayed twice weekly with one of a range of artificial mists at either pH 2.5, 3.0 or 5.6, for three months. The mists consisted of either (NH4)2SO4 (pH 5.6), NH4NO3 (pH 5.6), water (pH 5.6), HNO3 (pH 2.5), H2SO4 (pH 2.5). In late December 1988 and early January 1989 the light response of assimilation and stomatal conductance were assessed in the laboratory following a 4-day equilibration period at 12 degrees C. The intact trees were then subjected to a mild (-10 degrees C), brief (3 h) frost in the dark and the recovery of light saturated assimilation (Amax) was followed during the subsequent light period. The same trees were then subjected to a second 3 h (-18 degrees C) frost. The recovery of Amax during the next day was followed. All ion-containing mists stimulated Amax and apparent quantum yield relative to control trees, irrespective of pH. The mists containing SO4 made stomatal conductance unresponsive to light flux density and caused the stomata to lock open. Frosts of -10 degrees C and -18 degrees C did not inhibit the Amax of control trees for longer than 200 min into the light period. In contrast, the ion-containing mists exerted a significant inhibitory effect upon the recovery of Amax. Nitric acid inhibited Amax to 35% of the pre-frost value, whilst the remaining treatments inhibited Amax between 15% and 40% of the pre-frost value. It is concluded that SO4 causes increased mid-winter frost sensitivity and NO3 ameliortes this effect. The results are discussed in relation to forest decline.  相似文献   

10.
Two clones of Norway spruce were exposed to elevated ozone levels (100 microg m(-3) with episodes of 130-360 microg m(-3)) in combination with acidic mist (pH 3.0) for two vegetation periods. The plants did not exhibit any visible injury, but levels of several amino acids and polyamines were altered in comparison with control plants (50 microg m(-3) ozone, mist of pH 5.6), the changes being pronounced in clone 14. Total free amino acids as well as methionine titers were increased in clone 14. Asparagine was significantly increased in clone 11 and less so in clone 14. Arginine, which comprised more than 50% of the free amino acids in spruce needles, was not changed by the exposure regime applied. Reduced glutathione was significantly increased in all clones/soil/needle age combinations (average increase 50%). Free soluble putrescine was enhanced by 50-200% in clone 14, but remained unchanged in clone 11. Conjugated putrescine was significantly, and conjugated spermidime was slightly, increased in both clones, whereas other polyamines did not responde to the treatment.  相似文献   

11.
Five clones of 3-year old Norway spruce (Picea abies [L.] Karst), planted in a soil from the Bavarian Forest (pH 4.4) or a soil from the Calcareous Bavarian Alps (pH 6.9), were exposed for two successive vegetation periods, in closed environmental chambers, to a pollution treatment consisting of acidic mist (pH 3.0) plus ozone levels of 100 microg m(-3) with episodes of 130-360 microg m(-3); control trees were exposed to mist of pH 5.6 and ozone levels of 50 microg m(-3). Climatic and pollution protocols followed the diurnal and seasonal pattern characteristic for the Inner Bavarian Forest in Southern Germany, an area affected by the new-type forest decline. Biometric parameters were strongly related to clone and soil. Pollution treatment had a limited effect on only a few growth parameters. The stem diameter growth increment of two clones was reduced by pollution treatment in both soils, a third clone was affected in the acidic soil only. Two other clones were not affected at all. Stem volume increment of three clones, calculated as D(2)H, was reduced by pollution treatment in the neutral soil, a fourth clone was affected in the acidic soil only. Bud break was either delayed (two clones) or accelerated (two other clones) by treatment. Depending on soil and clone, needle yellowing was observed in previous years' needles in both treatment and control trees exposed to increased light intensities. The 'spotted' yellowing was not identical to symptoms found in forest decline areas and was most likely a consequence of nutrient deficiencies during the vegetation period preceding the experiment. The results of this experiment are discussed with regard to field observations and forest productivity. The complex pattern of growth responses resulting from interactions between air pollution, soil and genetic factors is considered to reflect different susceptibilities of trees to air pollutants.  相似文献   

12.
Light and electron microscopic studies of four clones of 5-year-old Picea abies trees subjected to ozone and acid mist treatment showed, that: (1) Clones respond differently to the treatment, with clone 14 the most sensitive clone. (2) Main effects were observed in the mesophyll; the vascular strand showed minor cellular changes. (3) Needle shape and ratio of intercellular area to cross section was clone- age-dependent, with a clear increase in intercellular space associated with the treatment (clone 14 and 11 only). (4) Accumulation of tannins in vacuoles was clone-specific. (5) Strong starch formation was found in all samples; in clones 14 and 133 this formation was enhanced by the treatment in older needles, if number of starch grains per cell was calculated. (6) The accumulation of plastoglobules in plastids depended on clone and age, with the older needles containing more globules. In clones 11 and 133, the treatment led to an increase in the number of plastoglobules. (7) Grana stacking in all clones and both needle ages subjected to ozone and acid mist was significantly reduced. The observed changes in the ultrastructure of needle tissue are comparable to those found in field investigations with similar conditions, or phytotron studies evaluating pollution effects on spruce trees.  相似文献   

13.
The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher soil conductivity and Ca concentration resulted from the prolonged pH 3 treatment. The results strongly support the hypothesis that the long-term growth and nutrient allocation response of conifers to acid precipitation is dependent both on the tree species and on the nutritional status of the soil.  相似文献   

14.
Four clones of 3-year-old Norway spruce (Picea abies (L.) Karst.), grown on two soils, were from July 1986 to September 1987 exposed to ozone fumigation (50 microg m(-3) as a control, 100 microg m(-3) plus peaks between 130 and 360 microg m(-3) as treatment) and acid mist of pH 3.0 (versus mist pH 5.6 in the control). Climatic conditions, identical for both control and treatment, followed a diurnal and seasonal pattern characteristic of medium high altitudes of the Bavarian Forest, an area affected by the new-type forest decline. Gas-exchange measurements were carried out on the plants from December 1986 until the end of the 14-month's exposure using a series of climate-controlled minicuvettes. ANOVA of the four clones investigated towards the end of the experiment gave hints of a treatment-related depression of the photosynthetic capacity of the previous year's needles (age-class 1986). Within this age-class only one of the clones (11) showed a significant treatment effect, indicating an age-class dependence and a genetic influence of the treatment-related depression of the photosynthetic capacity. The current year's flush was not impaired through the ozone and acid mist exposure. Analysis also revealed clear effects of soil, clone and needle age on photosynthetic parameters.  相似文献   

15.
We investigated the additive and interactive effects of simulated acid rain and elevated ozone on C and N contents, and the C:N ratio of one-year-old and current-year foliage of field-grown mature trees and their half-sib seedlings of a stress tolerant genotype of ponderosa pine. Acid rain levels (pH 5.1 and 3.0) were applied weekly to foliage only (no soil acidification or N addition), from January to April, 1992. Plants were exposed to two ozone levels (ambient and twice-ambient) during the day from September 1991 to November 1992. The sequential application of acid rain and elevated ozone mimicked the natural conditions. Twice-ambient ozone significantly decreased foliar N content (by 12-14%) and increased the C:N ratio of both one-year-old and current-year foliage of seedlings. Although similar ozone effects were also observed on one-year-old foliage of mature trees, the only statistically significant effect was an increased C:N ratio when twice-ambient ozone combined with pH 3.0 rain (acid rain by ozone interaction). Enhancing the effect of twice-ambient ozone in increasing the C:N ratio of one-year-old foliage of mature trees in June was the only significant effect of acid rain.  相似文献   

16.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were transported to five forest sites at increasing distances from a pulp mill emitting mainly SO(2). Levels of compounds which may have nutritional or defensive value for aphids on pine and spruce seedlings were studied. Glucose and fructose concentrations were significantly increased in pine and spruce needles near the pulp mill. There were no changes in sucrose and starch concentrations. In pine shoots, total free amino acid concentration and the concentrations of ornithine, lysine, histidine and arginine were significantly negatively correlated with the distance from the pulp mill, while in spruce only the individual amino acids glycine, ornithine, lysine and histidine showed a significant negative correlation with distance. There were no changes in total phenolic, catechin, total monoterpene and total resin acid concentrations. However, in pine seedlings monoterpenes beta-pinene and sabinene and in spruce seedlings resin acid palustric acid were significantly correlated with the distance from the pulp mill. The results indicate that SO(2) disturbs carbohydrate metabolism in spruce and pine seedlings. The elevated concentrations of arginine may be the result of the combinations of SO(2), NO(3) and NH(3) emissions of the pulp mill. The emissions did not have any impact on total amounts of defensive substances in trees. Thus, the possible susceptibility of conifers to herbivores appears to be due to changes in nutritive value rather than to reduced chemical resistance.  相似文献   

17.
This paper summarizes and evaluates the main findings of 14 preceding papers related to the joint 14-month tree-exposure experiment carried out by the 'Munich Working Party on Air Pollution' at the GSF, Munich, FRG, from July 1986 to September 1987. The experiment tested the hypothesis that an interaction of ozone/acid mist/soil/extreme climatic conditions is the cause of decline of Norway spruce (Picea abies (L.) Karst.) at higher altitudes of the Inner Bavarian Forest. The main findings of the individual studies are presented and their implications for the hypothesis are discussed. Clear effects of soil and genetic factors (differences between clones), for example on growth and frost resistance were found. Treatment with O(3)/acid mist was shown to have effects on plant biochemistry, physiology, histology/ cytology, and growth. The wide scattering of these effects, and the lack of a consistent pattern of response across all clones does not permits a firm conclusion on the validity of the experimental hypothesis. These effects were not confounded by the nutrient stresses imposed during the initial exposure period and were not found to be cumulative during repeated treatments, as was proposed by the hypothesis. It is concluded that the experimental evidence does not indicate that ozone/acid mist are major factors to explain the Norway spruce decline on acidic sites at higher altitudes of the Inner Bavarian Forest and probably similar forest areas.  相似文献   

18.
Previous experiments with conifers fumigated with O(3), produced by air-operated electric discharge ozonators, have provided evidence that O(3) increases the leaching of NO(3)(-), NH(4)(+), K(+), Ca(2+), Mg(2+) and some other cations from needles, when the trees are treated with acid mist. This evidence has provided the foundation of the ozone-acid mist hypothesis of spruce decline. We report experiments with Norway spruce saplings fumigated with purified and unpurified O(3). The results show that the accumulation of NO(3)(-) in the needles arises from the rapid deposition of N(2)O(5) and HNO(3) formed from N(2) in the ozonator. An increase in removal of NH(4)(+), Na(+), Ca(2+), Mg(2+), Zn(2+) and Mn(2+) from the needles during soaking in H(2)SO(4), pH3, was also observed, which was related to the increase in NO(3)(-) but was independent of O(3) concentration. It is concluded that results of previous experiments cited in support of the ozone-acid mist hypothesis arose from effects which were at least partly caused by N(2)O(5) produced as a contaminant, and were incorrectly attributed to ozone. Other effects, such as growth stimulations, visible symptons, enhanced frost sensitivity, and infestation by pests or pathogens, which have been attributed to O(3) generated by electric discharge in air, should be interpreted with caution. Future experiments with ozone must eliminate this problem by either using O(2)-driven ozonators, or by purifying the output from air-driven ozonators using cold and/or water traps.  相似文献   

19.
Throughfall chemistry was studied in a mature Sitka spruce plantation in order to investigate canopy interactions, such as nitrogen absorption, cation leaching, and neutralization of rainfall passing through the canopy. The plantation had been exposed to six different simulated mist treatments including N (NH(4)NO(3)) and S (H(2)SO(4) at pH 2.5) in four replicated blocks since 1996. Throughfall and rainfall were collected from May to September 2000. The results showed that 30-35% of the applied N was retained by the canopy. There were linear relationships between the loss of H(+) and increased K(+), Mg(2+) and Ca(2+) deposition through the canopy. However these increases in K(+), Mg(2+) and Ca(2+) deposition accounted for only about 50% of total neutralization of the acidity. The relationship between the anion deficits in throughfall and the loss of H(+) implied that weak organic acid anions were involved in the neutralization of the acidity in throughfall.  相似文献   

20.
Short rotation coppice cultures (SRC) are intensively managed, high-density plantations of multi-shoot trees. In April 1996, an SRC field trial with 17 different poplar clones was established in Boom (Belgium) on a former waste disposal site. In December 1996 and January 2001, all shoots were cut back to a height of 5 cm to create a coppice culture. For six clones, wood and bark were sampled at the bottom, middle and top of a shoot in August and November 2002. No significant height effect of metal concentration was found, but for wood, metal concentrations generally increased toward the top of the shoot in August, and decreased toward the top of the shoot in November. Phytoextraction potential of a clone was primarily determined by metal concentration and by biomass production. Shoot size and number of shoots per stool were less important, as a high biomass production could be achieved by producing a few large shoots or many smaller shoots. Clone Fritzi Pauley accumulated 1.4 kg ha(-1) of Al over two years; Wolterson and Balsam Spire showed a relatively high accumulation of Cd and Zn, i.e. averaging, respectively 47 and 57 g ha(-1) for Cd and 2.4 and 2.0 kg ha(-1) for Zn over two years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号