首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
以不溶性腐殖酸(Insolubilized Humic Acid,IHA)为吸附剂,去除废水中的U(Ⅵ).通过静态吸附试验,考察了pH值、时间、U(Ⅵ)初始质量浓度和温度等对吸附的影响,分析了吸附过程的动力学、热力学及等温吸附规律,并用红外光谱(FT-IR)和扫描电镜(SEM)分析了吸附机理.结果表明:35℃下1.4 g/L的IHA在pH值为5时对10 mg/LU(Ⅵ)的去除率可达99.37%;IHA对U(Ⅵ)的吸附是自发的、放热的反应,符合Freundlich等温吸附方程,决定系数达0.99以上;吸附动力学过程符合准二级吸附速率方程,决定系数为1;IHA吸附U(Ⅵ)后表面形态发生了变化,与U(Ⅵ)相互作用的基团主要是羧基和酚羟基,综合看来,IHA吸附U(Ⅵ)的机理表现为离子交换.  相似文献   

2.
探讨纳米Fe3O4负载铜绿假单胞菌吸附铀的动力学与热力学过程,以及相关反应的速率控制过程。结果表明:纳米Fe3O4负载铜绿假单胞菌对U(VI)的吸附过程符合准二级动力学模型(R2≥0.9995);膜扩散和粒子内部扩散是吸附的控制步骤;Bangham模型拟合结果表明粒子内部扩散不是唯一的速率控制步骤,而液相边界层和粒子外部传质过程对吸附的影响不能忽略;表观活化能为15.705kJ/mol。热力学试验结果表明:纳米Fe3O4负载铜绿假单胞菌对U(VI)的吸附服从Langmuir、Freundlich等温模型,表明吸附是一个单层覆盖与多层吸附相结合的过程;在298 K、303 K、308 K下Langmuir模型拟合最大吸附量分别为92.483 mg/g、103.875 mg/g、107.918 mg/g;吸附过程ΔH>0、ΔS>0、ΔG<0,表明吸附过程自发进行,为吸热过程,存在着各种化学键力和范德华力作用,化学吸附与物理吸附过程共存。  相似文献   

3.
通过序批式试验研究了腐殖酸(Humic Acid,HA)对铀的吸附行为及时间、吸附剂用量、铀的初始质量浓度、pH值、温度和共存离子等试验条件对吸附的影响,分析了其热力学和动力学过程,用扫描电镜(SEM)、红外光谱(FT-IR)手段分析了相关吸附机理.结果表明,吸附过程在60 min后达到动态平衡,吸附率最高达99%以上.当pH值在5左右时,HA投加量越大,吸附效率越高.体系中HCO3-、H2PO4-;的存在对HA吸附U(Ⅵ)有促进作用,而柠檬酸根离子、EDTA2-及Cr6+、Mn2+使HA对U(Ⅵ)的吸附率降低,影响程度与其离子浓度正相关.准二级吸附动力学方程可以较好地描述HA吸附U(Ⅵ)的动力学规律,R2=0.9951.当温度为25℃时,U(Ⅵ)质量浓度与吸附量之间的关系符合Langmuir经验公式,饱和吸附容量为170.94 mg/g.HA吸附U(Ⅵ)前后的IR光谱分析表明,HA主要含有—OH、—COOH、—NH2、—C—N、苯环等结构,推断与U(Ⅵ)相互作用的主要基团为—OH、—C=O、—C—N—、—NH2.  相似文献   

4.
以柚子皮为原料,经乙醇处理,得到改性柚皮吸附剂,并将其用于对水溶液中Cr(Ⅵ)的吸附,研究了吸附剂用量、温度、水样初始p H值、Cr(Ⅵ)初始质量浓度、吸附时间等对水溶液中Cr(Ⅵ)吸附效果的影响。结果表明,各因素中p H值对改性柚皮吸附Cr(Ⅵ)的影响较大。对初始质量浓度为20 mg/L的Cr(Ⅵ)溶液,改性柚皮投加量为20 g/L、温度为25℃、水样初始p H=1时,吸附420 min后,Cr(Ⅵ)的去除率达99%以上。Freundlich吸附等温模型和二级吸附动力学模型可以很好地对改性柚皮的吸附过程进行线性拟合,决定系数R2分别为0.975 1和0.996 6。  相似文献   

5.
采用改进的滴加成球法合成壳聚糖树脂,用环氧氯丙烷对树脂进行交联,制备新型壳聚糖交联树脂.研究了交联树脂对Cr(Ⅵ)的吸附效果,探讨了溶液pH值、吸附时间、温度、Cr(Ⅵ)初始质量浓度等因素对吸附性能的影响及吸附热力学和动力学.结果表明,各因素中pH值对壳聚糖交联树脂吸附Cr(Ⅵ)影响较大.对初始质量浓度为120 mg/L的Cr(Ⅵ)溶液,壳聚糖交联树脂投加量为1 g/L,pH=3,温度为25℃,吸附2h时可达到最大吸附容量(72 mg/g).用Langmuir 等温模型和Pseudo second-order动力学模型对树脂的吸附过程进行线性拟合,R2分别为0.999 9和0.999 7,模型计算的饱和吸附容量qmax(73.53 mg/g)和平衡吸附量qe(29.23mg/g)与试验结果(72.10 mg/g和27.73 mg/g)基本吻合.Fick扩散模型表明,树脂对Cr(Ⅵ)的吸附可分为3个阶段,说明Cr(Ⅵ)的去除是物理吸附和化学吸附共同作用的结果.  相似文献   

6.
通过试验对粒径介于0.25~0.50mm的花生壳颗粒吸附Cr(Ⅵ)的动力学行为进行探讨,从吸附时间、pH值、吸附剂投加量、温度、Cr(Ⅵ)的初始质量浓度方面对吸附性能的影响进行研究.结果表明,最佳吸附条件为:Cr(Ⅵ)初始质量浓度100 mg/L,pH=2.0,振荡速度140 r/min,温度30℃.此时Cr(Ⅵ)的吸附率可达到90%以上.用Lagergren一级吸附速率方程、二级吸附速率方程及平均绝对偏离率对以上因素对吸附件能的影响数据进行处理,发现二级吸附动力学模型可以更好地描述各种影响因素条件下的吸附过程.二级吸附速率常数随着溶液pH值和Cr(Ⅵ)初始质量浓度的减小而增大.在低浓度和低pH值的条件下,Cr(Ⅵ)主要以HCrO4-形式存在,并且HCrO4-是花生壳主要吸附的Cr(Ⅵ).二级吸附速率常数随着溶液温度的升高而快速的增加.温度对反应速率的影响可以通过Arrhenius方程来描述,所得曲线近似为直线方程,决定系数R2=0.986 2,反应的活化能Ea为8.67kJ/mol,该反应活化能在物理吸附反应活化能范围(0~40 kJ/mol)内.  相似文献   

7.
分别采用热提法与蒸汽法对好氧污泥胞外聚合物(Extracellular Polymeric Substances,EPS)进行了提取,对两种方法提取效果进行比较,并探讨了EPS投加量、吸附时间、温度、pH值等对吸附的影响。结果表明:采用热提法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.111 g/L、0.235 3 g/L、0.111 0 mg/L,蛋白质与多糖质量浓度比值为8.971;而采用蒸汽法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.828 g/L、0.744 4 g/L、0.247 9 mg/L,蛋白质与多糖质量浓度比值为3.800。pH值对染色剂玫瑰红B的吸附过程影响显著,适宜pH=6。随温度增加,吸附量增大,在50℃时达到最大。染色剂玫瑰红B在EPS上的吸附量随吸附时间增加而增大,初始进行得很快,在720min时达到吸附平衡。当EPS初始质量浓度为800 mg/L时,其饱和吸附量为12.61 mg/g。准二级动力方程很好地拟合了各温度的吸附动力学数据且R20.987。分别采用Langmuir与Freundlich等温吸附模型进行热力学拟合,Langmuir等温模型在各温度下的模拟方程决定系数均在0.7以下;而Freundlich等温模型各温度的模拟方程决定系数在0.81~0.98,相关性明显好于Langmuir吸附等温模型,因此吸附较符合Freundlich等温模型。  相似文献   

8.
为了研究用于含汞离子废水处理的新型高效材料,研究了纳米γ-Fe2O3对汞离子的吸附行为。探讨pH值(3、8和12)、温度(288 K、298 K、308 K、318 K)和离子强度(Ca2+,0.001 mol/L、0.01 mol/L、0.1 mol/L)对该吸附的影响。使用吸附动力学方程(拉格朗日准一级、准二级)和等温吸附方程(Langmuir和Freundlich)分别对吸附数据进行拟合,并讨论吸附机理。结果表明:pH值为3、8、12时,纳米γ-Fe2O3对汞离子的吸附动力学方程符合准二级动力学模型(R2=0.997~0.999);288 K、298 K、308 K、318 K时,纳米γ-Fe2O3对汞离子的吸附过程更符合Langmuir吸附模型(R2=0.970~0.995),并且随温度升高,吸附量增加;在不同pH值下,纳米γ-Fe2O3对汞离子的吸附等温式可使用Langmuir模式(R2=0.983~0.996)进行表征,随p H值降低,吸附量减少,中性环境有利于吸附;在不同Ca2+浓度下,可用Langmuir等温吸附式拟合(R2=0.990~0.996)。通过Langmuir等温吸附式推算出最大吸附量随Ca2+浓度增加而减少。  相似文献   

9.
利用黑曲霉常用液体培养基对黄孢原毛平革菌进行扩大培养得到的菌丝球经过冷冻干燥后磨成粒径约为180 μm的粉末用于吸附废水中的Cr(Ⅵ).考察了pH、吸附时间以及预处理方法对吸附的影响.在不同初始浓度条件下,对Cr(Ⅵ)终浓度以及吸附量进行线性转换,发现pH=2.0条件下Langmuir和Freundlich吸附模型能较好地描述P.chrysosporium菌丝球粉末对Cr(Ⅵ)的吸附.比较吸附前后的傅立叶变换红外光谱图可知,P.chrysosporium吸附Cr(Ⅵ)后,其主要成分和结构保持完整.  相似文献   

10.
黑曲霉对弱酸性艳兰RAWL的吸附动力学和热力学研究   总被引:3,自引:0,他引:3  
借助吸附等温线比较了不同pH以及完整细胞与单细胞壁染料生物的吸附性能差异,化学修饰研究了菌体表面不同官能团对染料吸附的贡献,考察了不同温度下染料生物的吸附动力学,并进行了模型拟合.结果表明,黑曲霉的染料吸附较好地符合Freundlich方程( R2 >0.99),低pH值有利于染料吸附;染料吸附不仅发生在细胞壁,细胞内部也可发生;表面氨基作为主要的吸附官能团,其质子化导致的菌体正电荷和染料负离子间的静电引力作用是染料吸附的重要机理;吸附动力学可用拟二级速率方程描述( R2 =0.999 9);吸附活化能 Ea=5.21 kJ/mol,表明吸附具一定的活化性.  相似文献   

11.
为研究胶州湾北部沉积物汞吸附的特征,于2012年5月中旬在位于胶州湾北部的红岛贝类养殖滩涂采集沉积物样品,选取两种理化性质差异较大的沉积物。采用F732-V型冷原子吸收测汞仪对沉积物中的总汞质量比进行测定。结果表明,在两种汞质量浓度条件下,有机质质量比和CEC值较高的沉积物最大汞吸附量与有机质质量比和CEC值较低的沉积物最大汞吸附量的比值在106%~143%。用Langmuir、Freundlich、Temkin等温吸附方程对试验数据进行拟合,其中Freundlich(r=0.917~0.945)、Temkin(r=0.909~0.932)等温吸附方程的拟合程度较高。pH值对两种沉积物的汞吸附量有明显影响,当pH值约为7时,两种沉积物的汞吸附量均最大;pH7时,两种沉积物的汞吸附量随pH值增加而递增;pH7时,两种沉积物的汞吸附量随pH值增加而减小。  相似文献   

12.
采用化学沉淀法用十八烷基三甲基氯化铵(OTAC)改性天然沸石,研究了改性沸石(O-Z)对废水中Cr(Ⅵ)的吸附特性。O-Z表征结果显示:改性后其表面粗糙程度、孔隙度和比表面积均增大。吸附实验结果显示:在T=25℃、Cr(Ⅵ)初始质量浓度20 mg/L、O-Z投加量0. 1 g、吸附时间12 h、pH=2时,OZ对Cr(Ⅵ)吸附量达到3. 22 mg/g; O-Z对Cr(Ⅵ)的吸附数据与准二级动力学模型的线性相关性显著;与Langmuir等温方程拟合良好,说明该吸附是单分子层吸附;热力学分析反映吸附过程是自发的、吸热反应。  相似文献   

13.
选用农林剩余物加工制得生物炭,用强氧化剂(KMnO_4、H_2O_2、HNO_3)对生物炭进行化学改性,选择最佳改性方法。通过吸附试验得出用0.01 mol/L KMnO_4改性的生物炭除铀效果最佳。采用KMnO_4改性的生物炭对废水中的铀进行吸附,考察吸附剂投加量、溶液pH值、吸附时间、溶液初始质量浓度等因素对U(Ⅵ)去除效果的影响。结果表明,当吸附剂投加量为0.3 g/L、U(Ⅵ)质量浓度为10mg/L、溶液pH=6、温度为25℃、吸附时间为120 min时,改性生物炭对U(Ⅵ)的去除效果最佳,吸附量达到32.57 mg/g,比未改性前提高了67.9%。对改性前后的生物炭进行了SEM、XRD、FTIR表征及表面含氧官能团测定、吸附动力学分析。结果表明,改性生物炭对U(Ⅵ)的吸附过程符合准二级动力学方程及Langmuir等温吸附模型(决定系数R20.99)。这表明对溶液中铀的去除可能是化学沉淀作用的结果,改性后含氧官能团增加,对溶液中铀的去除也可能存在官能团络合作用与表面吸附,使吸附剂化学吸附能力增强,除铀能力提高。  相似文献   

14.
炭化小麦秸秆对水中氨氮吸附性能的研究   总被引:3,自引:1,他引:2  
用直接炭化法制备了小麦秸秆吸附剂,并通过静态吸附试验研究了炭化小麦秸秆对氨氮的吸附性能和影响因素。结果表明:直接炭化法制备小麦秸秆吸附剂的最佳炭化温度为300℃;在试验的pH值范围内,pH=9时炭化小麦秸秆对氨氮的吸附去除最好;300℃时炭化小麦秸秆吸附不同质量浓度(ρ=30 mg/L、50 mg/L、100 mg/L)氨氮的动力学曲线符合准二级动力学模型,吸附常数k2分别为0.681 8g/(mg.min)、0.747 4 g/(mg.min)、1.025 0 g/(mg.min);直接炭化小麦秸秆吸附剂对氨氮吸附去除的最佳温度是30℃;不同温度下的吸附等温线可用Freundlich吸附等温方程进行拟合;由吸附热力学方程计算得到的等量吸附焓变ΔH>0,吸附自由能变ΔG<0,吸附熵变ΔS>0,表明炭化小麦秸秆对氨氮的吸附为吸热的和熵增加的自发过程,且属于物理吸附。  相似文献   

15.
采用化学沉积法制备了二氧化锰/羟基氧化铁(MnO2/FeOOH)复合材料,并将其用于吸附去除水中的放射性重金属铀。通过静态吸附试验,考察了Fe/Mn物质的量比、pH值、吸附时间和干扰离子等因素对MnO2/FeOOH吸附U(Ⅵ)效果的影响,利用扫描电镜-能谱分析(SEM-EDS)、X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FT-IR)和X射线光电子能谱(XPS)对材料结构和形貌进行表征,并分析其吸附机理。结果表明,在投加量为150 mg/L、温度为30℃、U(Ⅵ)初始质量浓度为10 mg/L、pH值为5、Fe/Mn物质的量比为1/2及吸附时间为120 min的条件下,MnO2/FeOOH对U(Ⅵ)的去除率最大可达97.7%,且pH值对铀去除效果的影响最为明显。MnO2/FeOOH对U(Ⅵ)吸附动力学符合准二级动力学模型,吸附等温线均能符合Langmuir和Freundlich模型,且最大吸附容量达260.34 mg/g。干扰离子试验表明,SO42-、CO32-和Fe3+对MnO2/FeOOH吸附U (VI)几乎没有影响,而Ca2+和Cu2+具有明显的抑制作用,且抑制随浓度的增大而增强。FTIR和XPS分析表明MnO2/FeOOH对U(Ⅵ)的主要作用机制为表面羟基、Mn-O与铀的配位作用。因此,MnO2/FeOOH可作为一种潜在的铀吸附材料。  相似文献   

16.
采用静态吸附法测定了铀(U)在黏土中的分配系数,并考察了固液比、pH值、U(Ⅵ)质量浓度和吸附时间等因素对分配系数的影响,分析了其吸附过程中的热力学和动力学,通过红外光谱(FT-IR)、扫描电镜(SEM)探讨了相关吸附机理。结果表明,吸附在120 min时基本达到平衡,在pH=6时吸附效果最好,铀在黏土中的分配系数达到4.9×104mL/g,且黏土对铀的吸附过程符合Freundlich、Langmuir等温模型,准二级吸附动力学方程能很好地描述黏土对铀的吸附规律(R20.993)。铀的吸附分配系数随固液比增大先增大后减小。  相似文献   

17.
采用人造沸石吸附废水中的氨氮,研究了投加量、反应时间及初始pH等因素对吸附效果的影响,分析了其等温吸附线和吸附动力学.结果表明:人造沸石能够有效地处理质量浓度为150~200 mg/L的氨氮废水,当初始pH值为5,人造沸石投加量为25 g/L时,反应120 min后,氨氮去除率可80%左右,人造沸石比天然沸石的吸附平衡时间缩短了约50%;投加量、反应时间和初始pH值对人造沸石的吸附都有影响.随着投加量的增加,人造沸石对于氨氮的去除率逐渐增加;随着反应时间的延长,人造沸石对氨氮的去除率逐渐增加,达到吸附平衡后,去除率不再增加;初始pH值对于吸附效果有较大影响,偏酸环境下去除率较高.人造沸石对氨氮的吸附行为符合Freundlich方程,且为优惠吸附;准一级方程比准二级方程能够更好地拟合吸附动力学试验数据,吸附速率随着投加量的增大而增大.  相似文献   

18.
壳聚糖负载MnO2对As(Ⅲ)的吸附性能研究   总被引:1,自引:1,他引:0  
利用壳聚糖负载MnO2制备一种复合吸附剂.研究了溶液pH值、吸附时间、温度对As(Ⅲ)吸附行为的影响,并探讨了吸附动力学.结果表明,在pH值为5~8,吸附时间为60 min,温度为60℃,复合吸附剂对As(Ⅲ)的吸附率达98%以上,吸附能力明显优于壳聚糖.对试验数据运用相关数学模型拟合表明,复合吸附剂对As(Ⅲ)的吸附符合Langmuir和Freundlich吸附等温式,最大吸附量qmax为19.798mg/g,特性常数n为4.3341,决定系数R2分别为0.9975、0.9804.吸附过程动力学适合二级动力学方程.  相似文献   

19.
为了探讨奇球菌对铀的吸附特性,研究了pH值、吸附时间、菌体浓度、铀起始浓度和预处理奇球菌对铀吸附的影响,并考察了菌体上铀的解吸作用.结果表明,在pH值为4.0时,吸附量最大;30 min吸附基本达到平衡;吸附量与菌体浓度负相关,与铀起始浓度正相关,吸附量最大可达126.27 mg/g.经乙醇预处理的菌体,其吸附量有所上升.解吸试验表明,0.5 mol/L Na2CO3对铀的解吸率可达93.15%.与Langmuir吸附模型相比,奇球菌对U(Ⅵ)的吸附更符合Freundlich吸附等温式.  相似文献   

20.
采用批量试验的方法研究了西北地区黄土对克百威的吸附动力学和热力学行为,并对相关影响因素进行了分析。结果表明:黄土对克百威吸附的最优动力学方程为准二级动力学方程;克百威在黄土中的吸附较好地符合Freundlich等温吸附方程;黄土吸附克百威过程中的吉布斯自由能ΔG■、焓变ΔH■及熵变ΔS■都小于0,表明黄土对克百威的吸附为自发进行的放热过程,并且吸附过程中体系混乱度减小,黄土吸附克百威的主要作用力为氢键力;pH值为4~10时,随pH值增大克百威的吸附容量减小,且pH值为4~8时减小趋势较平缓,p H值为8~10时减小趋势很大;随供试土样粒径减小,克百威在黄土中的吸附容量增大,当土壤粒径从0.45 mm减小到0.075 mm时,吸附容量由0.009 mg/g增加到0.049 mg/g;克百威在黄土中的吸附容量受其初始质量浓度影响很大,随克百威初始质量浓度增大,黄土对其的吸附容量相应增加,克百威初始质量浓度从20 mg/L增至110mg/L时,其在黄土中的吸附容量从0.080 mg/g增加至0.206 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号