首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental and theoretical study of Eu(III) sorption on goethite surface was performed in the presence of different background electrolytes (NaCl, NaNO3, KNO3). Results were described using a simple surface complexation, the double-layer model (DLM), and calculations were performed using either Fiteql3.2 or Jchess codes. The surface acidity constants and sites density were first determined by potentiometric titrations. The influence of electrolyte ions on the value of point of zero charge was studied by both potentiometric and electrokinetic measurements in order to assess their possible retention on goethite. The sorption of Eu(III) was then investigated by the batch method, in the three background electrolytes, as a function of pH. The presence of electrolyte ions was found to decrease the immobilization of Eu on goethite. Sorption results were modelled considering ternary surface complexes (goethite surface/europium/electrolyte ions).  相似文献   

2.
We performed a sensibility analysis of model selection in modeling the reactive transport of cesium in crushed granite through model calibration and validation. Based on some solid phase analysis data and kinetic batch experimental results, we hypothesized three two-site sorption models in the LEHGC reactive transport model to fit the breakthrough curves (BTCs) from the corresponding column experiments. The analysis of breakthrough curves shows that both the empirical two-site kinetic linear sorption model and the semi-mechanistic/semi-empirical two-site kinetic surface complexation model, regardless of their complexity, can match our experimental data fairly well under given test conditions. A numerical experiment to further compare the two models shows that they behave differently when the pore velocity is not of the same order of magnitude as our test velocities. This result indicates that further investigations to help determine a better model are needed. We suggest that a multistage column experiment, which tests over the whole range of practical flow velocities, should be conducted to help alleviate inadequate hypothesized models.  相似文献   

3.
This paper compares the capability of a first-order and a spherical diffusion model to describe and predict long-term sorption and desorption processes of chlortoluron in two soils. Chlortoluron sorption was investigated at different time scales utilizing one rate experiment (120 days) and two sorption/desorption experiments. Experimental periods for sorption and desorption were set to 1 day (five desorption steps) and 30 days (three desorption steps), respectively. Upon fitting, the two models satisfactorily described the whole set of data. The spherical diffusion model performed better than the first-order model. We then tested the predictive capability of the models by predicting 30-day sorption/desorption data using kinetic parameters fitted on 1-day sorption/desorption data only. While the spherical diffusion model was able to predict the 30-day data set, the first-order model failed completely. Fitting both models to subsets of the data corresponding to different experimental time scales revealed that the rate parameter as well as the Freundlich coefficient of the first-order model are strongly time-dependent--a property that is not shared by parameters of the spherical diffusion model. The apparent stability of the spherical diffusion model with regard to time dependency of its parameters indicates that sorptive uptake may be diffusion-controlled. This also explains the models greater predictive power across different time scales compared to the first-order model. Finally, we investigate the suitability of solute class specific log-linear relationships between the first-order rate parameter and the Freundlich coefficient presented by earlier researchers in the light of the time dependency observed for the parameters of the first-order model.  相似文献   

4.
This paper presents a digitized version of a thermodynamic sorption database, implemented as a relational database with MS Access. It is mineral-specific and can therefore be used for additive models of complex solid phases such as rocks or soils. An integrated user interface helps users to access selected mineral and sorption data, to extract internally consistent data sets for sorption modeling, and to export them in formats suitable for other modeling software. Data records comprise mineral properties, specific surface area values, surface binding sites' characteristics, sorption ligand information, and surface complexation reactions. An extensive bibliography is included, providing links not only to the above listed data, but also to background information concerning surface complexation model theories, evidence for surface species, and sorption experimental techniques.  相似文献   

5.
This paper presents a digitized version of a thermodynamic sorption database, implemented as a relational database with MS Access. It is mineral-specific and can therefore be used for additive models of complex solid phases such as rocks or soils. An integrated user interface helps users to access selected mineral and sorption data, to extract internally consistent data sets for sorption modeling, and to export them in formats suitable for other modeling software. Data records comprise mineral properties, specific surface area values, surface binding sites' characteristics, sorption ligand information, and surface complexation reactions. An extensive bibliography is included, providing links not only to the above listed data, but also to background information concerning surface complexation model theories, evidence for surface species, and sorption experimental techniques.  相似文献   

6.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

7.
Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg?1) and elevated (81 to 99 mg kg?1) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely < 1% for glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact on the sorption than desorption of individual organic chemicals in soil.  相似文献   

8.
As one of the widely used antibiotics in the world, the environmental risks of tylosin (TYL) received more and more attention. In order to assess its environmental fate and ecological effects accurately, it is necessary to understand the sorption properties of TYL on the soils/sediments. The sorption of TYL on goethite at different pH and ionic strength conditions were measured through a series of batch experiments and the sorption data of TYL were fitted by Freundlich and dual-mode sorption models. It was obvious that sorption was strongly dependent on pH and ionic strength. Sorption capacity of TYL increased as the pH increased and ionic strength decreased. The pH and ionic strength-dependent trends might be related with complexation between cationic/neutral TYL species and goethite. The sorption affinity of TYL on goethite decreased as ionic strength increased, which only occurred at higher TYL concentrations, suggested that inner complex might have dominated process at low concentrations and outer complex might occur at higher concentrations of TYL. Spectroscopic evidence indicated that tricarbonylamide and hydroxyl functional groups of TYL might be accounted for the sorption on mineral surfaces. The experimental data of TYL sorption could be fitted by surface complexation model (FITEQL), indicating that ≡FeOH with TYL interaction could be reasonably represented as a complex formation of a monoacid with discrete sites on goethite. The sorption mechanism of TYL might be related with surface complexation, electrostatic repulsion, and H-bounding on goethite. It should be noticed that the heterogeneous of sorption affinity of TYL on goethite at various environment to assess its environment risk.  相似文献   

9.
This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (K(s)a(s)) and desorption (K(d)a(d)) were estimated. This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization, and the values of the overall mass transfer coefficient for volatilization (K(g)a(g)) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

10.
Sorption isotherms have been widely used to assess the heavy metal retention characteristics of soil particles. Desorption behavior of the retained metals, however, usually differ from that of sorption, leading to a lack of coincidence in the experimentally obtained sorption and desorption isotherms. In this study, we examine the nonsingularity of cadmium (Cd) sorption–desorption isotherms, to check the possible hysteresis and reversibility phenomena, in aqueous palygorskite, sepiolite and calcite systems. Sorption of Cd was carried out using a 24-h batch equilibration experiment with eight different Cd solution concentrations, equivalent to 20–100% of maximum sorption capacity of each mineral. Immediately after sorption, desorption took place using successive dilution method with five consecutive desorption steps. Both Cd sorption and desorption data were adequately described by Freundlich equation (0.81 < r2 < 0.99). The sorption and desorption reactions, however, did not provide the same isotherms, indicating that hysteresis occurred in Cd sorption–desorption processes. The extent of hysteresis was quantified based on the differences obtained from sorption and desorption isotherms regarding the amount of Cd sorbed, the Freundlich exponent, and the Cd distribution coefficient. The results revealed that, sepiolite possessed the most hysteretic behavior among the minerals studied. Calcite showed much smaller hysteresis compared to the other two silicate clays at low Cd surface load, but its hysteresis indices significantly increased, and exceeded that of palygorskite, as the amount of Cd in the systems increased. The average amount of Cd released after five desorption steps, was 13.8%, 2.2% and 3.6% for the palygorskite, sepiolite and calcite, respectively, indicating that a large portion of Cd was irreversibly retained by the minerals.  相似文献   

11.
Column experiments and model simulations were employed to evaluate the processes involved in multicomponent solute transport in a system with heterogeneous flow. Column experiments were performed with goethite embedded in polyacrylamide gel beads. The gel forms an immobile water region that can be accessed by diffusion. A two-region transport model with diffusion into spheres was combined with a surface complexation model to predict reactive transport in the goethite-gel bead system. Chromate and sulphate breakthrough curves were measured in a set of transport experiments, along with corresponding changes in the pH of the effluent. Sorption and transport of sulphate and chromate in separate columns were predicted from independently measured sorption parameters. The model overestimated the pH changes in the effluent, possibly because of proton buffering by the polyacrylamide gel. The effect of competitive sorption on transport was examined in experiments with both anions present. The model predicted the effect of competition very well in a system initially equilibrated with sulphate, followed by infiltration with chromate. However, when sulphate was infiltrated after equilibration with chromate, chromate desorption and sulphate adsorption were clearly overestimated by the transport model. The exchange between the more strongly bound chromate and the sulphate added subsequently may be too slow to cause a substantial chromate peak in the effluent. This suggests that the local equilibrium assumption was not applicable in this case.  相似文献   

12.
Nonideal transport of contaminants in porous media has often been observed in laboratory characterization studies. It has long been recognized that multiple processes associated with both physical and chemical factors can contribute to this nonideal transport behavior. To fully understand system behavior, it is important to determine the relative contributions of these multiple factors when conducting contaminant transport and fate studies. In this study, the relative contribution of physical-heterogeneity-related processes versus those of nonlinear, rate-limited sorption/desorption to the observed nonideal transport of trichloroethene in an undisturbed aquifer core was determined through a series of miscible-displacement experiments. The results of experiments conducted using the undisturbed core, collected from a Superfund site in Tucson, AZ, were compared to those obtained from experiments conducted using the same aquifer material packed homogeneously. The results indicate that both physical and chemical factors, specifically preferential flow and associated rate-limited diffusive mass-transfer and rate-limited sorption/desorption, respectively, contributed to the nonideal behavior observed for trichloroethene transport in the undisturbed core. A successful prediction of trichloroethene transport in the undisturbed core was made employing a mathematical model incorporating multiple sources of nonideal transport, using independently determined model parameters to account for the multiple factors contributing to the nonideal transport behavior. The simulation results indicate that local-scale physical heterogeneity controlled the nonideal transport behavior of trichloroethene in the undisturbed core, and that nonlinear, rate-limited sorption/desorption were of secondary importance.  相似文献   

13.
Zhu FD  Choo KH  Chang HS  Lee B 《Chemosphere》2012,87(8):857-864
The fate of endocrine disrupting chemicals (EDCs) in natural and engineered systems is complicated due to their interactions with various water constituents. This study investigated the interaction of bisphenol A (BPA) with dissolved organic matter (DOM) and colloids present in surface water and secondary effluent as well as its adsorptive removal by powdered activated carbons. The solid phase micro-extraction (SPME) method followed by thermal desorption and gas chromatography-mass spectrometry (GC-MS) was utilized for determining the distribution of BPA molecules in water. The BPA removal by SPME decreased with the increased DOM content, where the formation of BPA-DOM complexes in an aqueous matrix was responsible for the reduced extraction of BPA. Colloidal particles in water samples sorbed BPA leading to the marked reduction of liquid phase BPA. BPA-DOM complexes had a negative impact on the adsorptive removal of BPA by powered activated carbons. The complex formation was characterized based on Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, along with the calculation of molecular interactions between BPA and functional groups in DOM. It was found that the hydrogen bonding between DOM and BPA would be preferred over aromatic interactions. A pseudo-equilibrium molecular coordination model for the complexation between a BPA molecule and a hydroxyl group of the DOM was developed, which enabled estimation of the maximum sorption site and complex formation constant as well as prediction of organic complexes at various DOM levels.  相似文献   

14.
Temperature effects on chlorinated-benzene sorption to hydrophobic surfaces   总被引:1,自引:0,他引:1  
Sorption and desorption of chlorinated benzenes were investigated in a series of column experiments using porous silica that had phenyl groups bonded to the surface; the mass-fraction organic carbon was 0.016. Both sorption and desorption curves were asymmetrical, but they were mirror images of each other for most experiments, indicating good sorption reversibility. The resulting breakthrough curves were fit to an advection-dispersion mathematical model, with sorption as a first-order, reversible reaction. Significantly greater tailing in the chlorinated-benzene breakthrough curves versus the salt-tracer ones was evidence of slow sorption and desorption. ΔH° values for di-, tri- and tetra-chlorobenzene were 13–21 kJ mol−1, indicative of strong van der Waals binding. Despite these small values, slow desorption was attributed to slow binding and release rather than diffusion through the bonded organic phase. Desorption rates decreased in going from di- to tri- to tetra- to penta-chlorobenzene. This decrease was significantly more than the decrease in molecular-diffusion coefficients in the same series, suggesting a chemical rather than a physical rate control. There was less difference in sorption rates through the series, suggesting an inverse relation between partition coefficient and desorption rate. ΔG° values were −17 to −23 kJ mol−1, giving TΔS° values of about 4 kJ mol−1. Thus enthalpic contributions to sorption appear to be of greater importance than entropic contributions.  相似文献   

15.
Chen S  Nyman MC 《Chemosphere》2007,66(8):1523-1534
The sorption and desorption behavior of benzidine in eight solvent-sediment systems were studied using a batch method. The solvents tested included deionized water (DI), calcium chloride solution (CaCl2), sodium hydroxide solution (NaOH), acetonitrile (ACN), a mixture of acetonitrile and ammonium acetate solution (ACN-NH4OAc), methanol (MeOH), ammonium acetate solution (NH4OAc) and hydrochloric acid solution (HCl). Three sets of sorption isotherm experiments were conducted separately in these eight solvents with seven days, three weeks, and two months of contact times, respectively. The results demonstrated nonlinear benzidine sorption phenomena in all eight solvents with higher sorption affinities for sediment sites in the aqueous solvents than in the organic solvents. The results from the desorption experiments revealed that the benzidine desorption efficiencies in the solvents decreased in an order, which was approximately the reverse order of its sorption affinity. Results also suggested that hydrophobic partitioning and covalent binding processes dominated in the desorption experiments, while cation exchange process had little effect on desorption of benzidine. A three-stage model was subsequently applied to simulate the desorption data in the selected solvents of ACN, ACN-NH4OAc and NaOH, respectively. The rapidly desorbing initial fractions were about 0.13-0.20, 0.15-0.26, and 0.18-0.25 for ACN, ACN-NH4OAc and NaOH, respectively. Finally, the sorbed concentrations of benzidine in slowly and very slowly desorbing domains in the selected solvents were correlated with the maximum sorption capacities obtained from the Langmuir sorption isotherm model. The maximum sorption capacities of benzidine were found to be comparable to the amount of benzidine residing in the slowly and very slowly desorbing domains.  相似文献   

16.
17.
Cao J  Guo H  Zhu HM  Jiang L  Yang H 《Chemosphere》2008,70(11):2127-2134
Sorption and desorption of the herbicide prometryne in two types of soil subjected to the changes of pH and soil organic matter and surfactant were investigated. The sorption and desorption isotherms were expressed by the Freundlich equation. Freundlich Kf and n values indicate that soil organic matter was the major factor affecting prometryne behavior in the test soils. We also quantified the prometryne sorption and desorption behavior in soils, which arose from the application of Triton X-100 (TX100), a nonionic surfactant and change in pH. Application of TX100 led to a general decrease in prometryne sorption to the soils and an increase in desorption from the soils when applied in dosages of the critical micella concentration (CMC) 0.5, 1 and 2. At the concentration below the CMC, the non-ionic surfactant showed a tendency to decrease prometryne sorption and desorption. It appeared that TX100 dosages above CMC were required to effectively mobilize prometryne. Results indicate that the maximum prometryne sorption and minimum prometryne desorption in soils were achieved when the solution pH was near its pKa. Finally, the influence of TX100 on the mobility of prometryne in soils using soil thin-layer chromatography was examined.  相似文献   

18.
Xu N  Christodoulatos C  Braida W 《Chemosphere》2006,64(8):1325-1333
The mobility of Mo in soils and sediments depends on several factors including soil mineralogy and the presence of other oxyanions that compete with Mo for the adsorbent's retention sites. Batch experiments addressing Mo adsorption onto goethite were conducted with phosphate, sulfate, silicate, and tungstate as competing anions in order to produce competitive two anions adsorption envelopes, as well as competitive two anions adsorption isotherms. Tungstate and phosphate appear to be the strongest competitors of Mo for the adsorption sites of goethite, whereas little competitive effects were observed in the case of silicate and sulfate. Mo adsorption isotherm from a phosphate solution was similar to the one from a tungstate solution. The charge distribution multi-site complexation (CD-MUSIC) model was used to predict competitive adsorption between MoO(4)(2-) and other anions (i.e., phosphate, sulfate, silicate and tungstate) using model parameters obtained from the fitting of single ion adsorption envelopes. CD-MUSIC results strongly agree with the experimental adsorption envelopes of molybdate over the pH range from 3.5 to 10. Furthermore, CD-MUSIC prediction of the molybdate adsorption isotherm show a satisfactory fit of the experimental results. Modeling results suggest that the diprotonated monodentate complexes, FeOW(OH)(5)(-0.5) and FeOMo(OH)(5)(-0.5), were respectively the dominant complexes of adsorbed W and Mo on goethite 110 faces at low pH. The model suggests that Mo and W are retained mainly by the formation of monodentate complexes on the goethite surface. Our results indicate that surface complexation modeling may have applications in predicting competitive adsorption in more complex systems containing multiple competing ions.  相似文献   

19.
ABSTRACT

This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (Ksas) and desorption (Kdad) were estimated.This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization,and the values of the overall mass transfer coefficient for volatilization (Kgag) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

20.
Arsenic (As) contaminated aquifers contain iron minerals and clays that strongly bind As at their surfaces. It was suggested that As mobilization is driven by natural organic matter (including fulvic acids (FA) and humic acids (HA)) present in the aquifers either via providing reducing equivalents for reductive dissolution of Fe(III) (hydr)oxides or via competitive desorption of As from the mineral surfaces. In the present study we quantified sorption of As(III) and As(V) to Ca(2+)-homoionized illite (IL) and to kaolinite (Kao) as well as to HA-coated clays, i.e., illite-HA (IL-HA) and kaolinite-HA (Kao-HA) at neutral pH. Clay-HA complexes sorbed 28-50% more As than clay-only systems upon addition of 100μM As(III)/As(V) to 0.5g of clay or HA-clay with Ca(2+) probably playing an important role for HA binding to the clay surface and As binding to the HA. When comparing sorption of As(V) and As(III) to clay and HA-clay complexes, As(V) sorption was generally higher by 15-32% than sorption of As(III) to the same complexes. IL and IL-HA sorbed 11-28% and 6-11% more As compared to Kao and Kao-HA, respectively. In a second step, we then followed desorption of As from Kao, Kao-HA, IL and IL-HA by 100 and 500μM phosphate or silicate both at high (0.41-0.77μmol As/g clay), and low (0.04 to 0.05μmol As/g clay) As loadings. Phosphate desorbed As to a larger extent than silicate regardless of the amount of As loaded to clay minerals, both in the presence and absence of HA, and both for illite and kaolinite. At high loadings of As, the desorption of both redox species of As from clay-HA complexes by phosphate/silicate ranged from 32 to 72% compared to 2-54% in clay only systems meaning that As was desorbed to a larger extent from HA-coated clays compared to clay only systems. When comparing As(III) desorption by phosphate/silicate to As(V) desorption in high As-loading systems, there was no clear trend for which As species is desorbed to a higher extent in the four clay systems meaning that both As species behave similarly regarding desorption from clay surfaces by phosphate/silicate. Similarly, no significant differences were found in high As-loading systems in the amount of As desorbed by phosphate/silicate when comparing Kao vs. IL and Kao-HA vs IL-HA systems meaning that both clay types behave similarly regarding desorption of As by phosphate/silicate. At low As loadings, up to 80% of As was desorbed by phosphate and silicate with no noticeable differences being observed between different As species, different types of clay, clay vs clay-HA or the type of desorbant (phosphate and silicate). The results of this study showed that HA sorption to Ca(2+)-homoionized clay minerals can increase As binding to the clay although the As sorbed to the clay-HA is also released to a greater extent by competing ions such as phosphate and silicate. Desorption of As depended on the initial loadings of As onto the clay/clay-HA. Based on our results, the effect of humic substances on sorption of As and on desorption of As by phosphate and silicate has to be considered in order to fully understand and evaluate the environmental behavior of As in natural environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号