首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The long-term variability of total Cu content from fungicides applied in a certified wine region of Spain (La Rioja) and of other metals (Cd, Cr, Ni, Pb, and Zn) was evaluated in three young vineyard soils and subsoils unamended and amended with spent mushroom substrates (SMS) over a 3-year period (2006–2008). SMS is a promising agricultural residue as an amendment to increase the soil organic matter content but may modify the behaviour of metals from pesticide utilisation in vineyards. Fresh and composted SMS was applied each year at a rate of 25 t ha−1 (dry-weight). Copper concentrations in the three unamended soils were 21.2–88.5, 25.5–77.1, and 29.4–78.4 mg kg−1. They exceeded natural Cu concentrations of the region and reference sub-lethal hazardous concentration for soil organism. The concentrations of Cd, Ni, Pb, and Zn were largely below the sub-lethal limits. Thus, although Cu levels were lower than those of established vineyards, vine performance, and productivity might be affected. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. The amendment practice seemed to have caused temporarily Cu mobilization respect to untreated soils. Total zinc concentrations fall within the range of the natural soil of La Rioja and were significantly affected (p < 0.05) especially by fresh state SMS addition, with increasing up to 75% respect to untreated specimen. The results indicated a build-up of fresh sites for metal retention at both surface and subsurface level, although no accumulation of metals was observed in the short-term period. However, the benefit for soils and the negative effects need to be monitored in the long run.  相似文献   

2.
Illegal dumping of polychlorinated biphenyl (PCB) capacitors was discovered in Kobe, Japan, in 2001, leaving about 68 m(3) (92 tons) of soil contaminated with approximately 6.6 kg of PCBs. Solvent extraction technology carried out in 2002-2003 using isopropyl alcohol remedied the affected soil at the site. Forty-seven batch treatments were conducted during full-scale treatment. On average, 8.4 extraction cycles per batch were needed to achieve the clean-up goal for PCBs (i.e., the Japanese environmental quality standard for soil). Analytical results showed that the average PCB concentration (88 microg g(-1)-dry soil) in untreated soil samples of all the batches was decreased to 1.2 microg g(-1)-dry soil in treated soil samples, yielding a removal efficiency of 98.6%. Dioxin responsive-chemical activated luciferase gene expression assay (DR-CALUX) and enzyme-linked immunosorbent assay (ELISA) adopting a monoclonal antibody against 2,3',4,4',5-pentachlorobiphenyl (PCB #118) were used to rapidly screen soil samples before and after solvent extraction. The DR-CALUX and ELISA results were in good agreement with World Health Organization toxicity equivalent values and analytically determined PCB concentrations, respectively. Regular monitoring during the treatment period confirmed that the applied technology met Japanese environmental and control regulations concerning treatment and disposal of contaminated soils and treatment residues. After full-scale treatment, the amount of PCBs recovered from the solvent purification system approximated the estimated amount of PCBs spilled.  相似文献   

3.
The use of low-cost and environmental safety amendments for the in situ immobilization of heavy metals has been investigated as a promising method for contaminated soil remediation. Natural materials and waste products from certain industries with high captive capacity of heavy metals can be obtained and employed. Reduction of extractable metal concentration and phytotoxicity could be evaluated and demonstrated by the feasibility of various amendments in fixing remediation. In this review, an extensive list of references has been compiled to provide a summary of information on a wide range of potentially amendment resources, including organic, inorganic and combined organic-inorganic materials. The assessment based on the economic efficiency and environmental risks brought forth the potential application values and future development directions of this method on solving the soil contamination.  相似文献   

4.
A large number of studies on the reclamation of mine soils focused on the problem caused by metals and did not explore in depth the issue of nutrients and vegetation after the application of organic materials. The aim of this study was to compare the effect of two treatments made of wastes and vegetated with Brassica juncea L. on the fertility of a settling pond mine soil. The first treatment was compost, biochar, and B. juncea (SCBP) and the second treatment was technosol, biochar, and B. juncea (STBP). This study evaluated the effect of the treatments on the soil nutrient concentrations and fertility conditions in the soil amendment mixtures, after 11 months of greenhouse experiment. Total carbon and nitrogen concentrations were higher in treatment SCBP than in treatment STBP after 7 months but, after 11 months, carbon concentration was higher in STBP. The used technosol could have forms of carbon more stable than compost, which could be released slower than in the compost-amended soils. Both compost and technosol mixed with biochar also increased the concentration of calcium, potassium, magnesium, and sodium in exchangeable form in the mine soil.  相似文献   

5.
New Bedford Harbor (NBH), MA, is a Superfund site because of high polychlorinated biphenyl (PCB) concentrations in the sediment. From April 1994 to September 1995, a remedial dredging operation (termed the “Hot Spot”) removed the most contaminated sediments (PCB concentrations greater than 4000μg/g) from the upper harbor. During remediation, a monitoring program assessed the potential environmental impacts to NBH and adjacent Buzzards Bay. The monitoring program was developed with input from federal, state, and local authorities. Site-specific decision criteria were established to assess net PCB transport, water column toxicity, and PCB bioaccumulation in blue and ribbed mussels (Mytilus edulis and Geukensia demissa, respectively). The remediation was completed without exceeding PCB net transport or acute toxicity effects specified in the decision criteria. In addition, PCB bioaccumulation in mussels during this time period was not significantly greater than pre- or post-operational measurements. The results indicated that approximately 14000 cubic yards of highly PCB contaminated sediment were permanently removed with minimal environmental effects. The lessons learned during this operation, as well as previous pilot studies at the site, will be used to make full-scale remedial efforts in NBH more efficient and environmentally protective.  相似文献   

6.
Ion-exchange resins (IER) offer alternative approaches to measuring ionic movement in soils that may have advantages over traditional approaches in some settings, but more information is needed to understand how IER compare with traditional methods of measurement in forested ecosystems. At the Bear Brook Watershed in Maine (BBWM), one of two paired, forested watersheds is treated bi-monthly with S and N (28.8 and 25.2kgha−1yr−1 of S and N, respectively). Both IER and ceramic cup tension lysimeters were used to study soil solution responses after ∼11 years of treatment. Results from both methods showed treatments resulted in the mobilization of base cations and Al, and higher SO4—S and inorganic N in the treated watershed. Both methods indicated similar differences in results associated with forest type (hardwoods versus softwoods), a result of differences in litter quality and atmospheric aerosol interception capacity. The correlation between lysimeter and IER data for individual analytes varied greatly. Significant correlations were evident for Na (r=0.75), Al (r=0.65), Mn (r=0.61), Fe (r=0.57), Ca (r=0.49), K (r=0.41) and NO3—N (r=0.59). No correlation was evident between IER and soil solution data for NH4—N and Pb. Both IER and soil solution techniques suggested similar interpretations of biogeochemical behavior in the watershed.  相似文献   

7.
Campo de Jales is a village surrounding the abandoned Jales mine. The area is heavily contaminated with heavy metals and dusts from large tailings piles as result of centuries of mining operations. The aim of this study is to investigate potential health threats associated with site contamination. The population studied comprised two groups: people living in Campo de Jales (n = 229) and a control group – people living in Vilar de Macada (n = 234). Lead and cadmium exposure and symptoms survey were carried out.The results showed a significant higher levels of blood lead and cadmium between the Campo de Jales residents (lead: 9.5 microgr/dl versus 7.7 microgr/dl; cadmium: 0.84 microgr/dl versus 0,65 microgr/dl) as well as to a higher prevalence of respiratory and irritation symptoms and great concern about his own health.In conclusion: community is the scene of long-term health problems resulting from the site environmental contamination.  相似文献   

8.
The combination of morphological, clay mineralogy, physicochemical, and fertilitical properties of inceptisols were compared for monitoring soil quality response following long-term agricultural activities. For this target, fifty-nine paired surface soils belonging to five subgroups of inceptisols from the major sugar beet growing area and the adjoining virgin lands were described, sampled, and analyzed. The soils were alkaline and calcareous as characterized by high pH, ranging from 7.2 to 8, and calcium carbonate equivalent, ranging from 60 to 300 g kg − 1. Following long-term sugar beet cultivation, morphological properties modifications were reflected as weakening of structure, hardening of consistency, and brightening of soil color. Although, the quantity of clay minerals did not significantly change through long-term cropping, some modifications in the XRD pattern of illite and smectite were observed in the cultivated soils compared to the adjoining virgin lands mainly as a result of potassium depletion. Without significant variation, sand content decreased by 4–55% and silt and clay increased by 3–22% and 2–15%, respectively, in the cultivated soils than to that of the virgin lands. Both negative and positive aspects of soil quality were reflected regarding soil chemical and fertilitical properties and the role of negative effects far exceeded the role of positive effects. Typic calcixerepts was known to be more degraded through a significant decrease (P ≤ 0.001) in mean value of soil organic carbon (a drop of 24%), total N (a drop of 23%), available K (a drop of 42%), exchangeable K (a drop of 45%), potassium adsorption ratio and potassium saturation ratio (a drop of 44% and 42%, respectively) and a significant increase (P ≤ 0.001) in EC (a rise of 53%). Soil quality index, calculated based on nine soil properties [coarse fragments, pH, SOC, total N, ESP, exchangeable cations (Ca, Mg, and K), and available phosphorus], indicated that 60% of the all soil types studied had negative changes, 20% had positive changes, and 20% produced no changes in soil heath.  相似文献   

9.
In order to investigate the bioremedial potential of humic deposit (leonardite), the effects of the treatments of leonardite and a commercial bioaugmentation agent on the degradation of a variety of petroleum hydrocarbons (C13–C31) and soil enzyme activities (urease acid-alkaline phosphatase and dehydrogenase) were tested within a soil incubation experiment lasting 120 days. Experimentally crude-oil-contaminated soil (2.5%) was regulated to a C:N:P ratio (100:15:1; Oilcon), amended with 5% of leonardite and regulated to the same C:N:P ratio (Oilcon-L) or mixed with a commercial bioaugmentation product (Oilcon-B), respectively. In the short period of incubation (60 days), Oilcon and Oilcon-B treatments showed higher hydrocarbon degradations, whereas Oilcon-L showed higher hydrocarbon degradation over Oilcon and Oilcon-B treatments in the long-term (120 days). Applying contaminated soil with leonardite increased urease (LSD, 4.978, *P?<?0.05) and dehydrogenase (LSD, 0.660, *P?<?0.05) activities. However, acid and alkaline phosphatase activities showed no certain inclination between different treatments. Dehydrogenase seemed to be more related to hydrocarbon degradation process. Overall results showed that leonardite enhanced biodegradation of petroleum hydrocarbons and also stimulated soil ecological quality measured as soil enzyme activities.  相似文献   

10.
Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35–99.68% and 24.15–99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH3–N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH3–N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.  相似文献   

11.
Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.  相似文献   

12.
The observation from previous surveys, that Urtica dioica plants that had grown in metal contaminated soil in the floodplains of the former Rhine estuary in different habitats, but at comparable total soil metal concentrations, showed significant differences in tissue metal concentrations, led to the hypothesis that variation in other environmental characteristics than soil composition and chemical speciation of metals between habitats is also important in determining uptake and translocation of metals in plants. A field survey indicated that differences in root Cd, Cu and Zn concentrations might partly be explained by variation in speciation of metals in different habitats. However, shoot concentrations showed a different pattern that did not relate to variation in soil metal concentrations. In a habitat experiment Urtica dioica plants were grown in artificially contaminated soil in pots that were placed in the four habitats (grassland, pure reed, mixed reed, osier bed) that were also included in the field survey. After seven weeks the plants showed significant differences in Cu and Zn concentrations in roots and aboveground plant parts and in distribution of the metals in the plants between habitats. It was concluded that variation between habitats in environmental characteristics other than soil composition can explain as much variation in plants as can variation in soil metal concentrations and/or speciation. The implications for assessment of soil metal contamination and uptake by plants are discussed.  相似文献   

13.
铅冶炼区土壤重金属总量和有效态含量的函数分析   总被引:1,自引:0,他引:1  
采集铅冶炼企业周边3 000 m范围内220个表层土壤样品,测定了有毒有害元素铅、镉、砷和汞的总量和有效态含量,探讨了它们之间的关系。结果表明:研究区土壤受到汞、砷、铅、镉的污染依次明显严重,土壤重金属的总量和有效态含量的变异系数均大于100%,土壤镉、铅、汞、砷的生物有效性系数平均值分别为25.9%、17.2%、0.58%、0.11%。土壤铅、镉和砷的总量与其有效态含量呈显著正相关(P0.001),而汞的总量与其有效态含量的相关性不显著(P0.05)。土壤铅和镉的总量和有效态含量可以用直线函数和幂函数表达,函数反推的有效态值和对应统计值的变异系数不大于10%。  相似文献   

14.
典型重金属污染农田能源植物示范种植研究   总被引:10,自引:0,他引:10       下载免费PDF全文
为探索安全经济利用重金属中度-重度污染农田的模式,在浙江某典型重金属复合污染农田开展了能源植物(甜高粱Sweet sorghum、甘蔗Saccharum sinensisRoxb.、香根草Vetiveria和盐肤木Rhus chinensis)种植示范研究.结果表明,经施加0.1%的石灰和0.2%的磷矿粉改良后,土壤p...  相似文献   

15.
Lead is a highly toxic element and forms stable compounds with phosphate, which is commonly used to immobilize Pb in soils. However, few studies have monitored the long-term stability of immobilized Pb, which is a critical factor in determining the effectiveness of the in situ stabilization technique. Both soluble and insoluble phosphate compounds were tested for Pb immobilization, and its subsequent mobility and bioavailability in a contaminated soil from a shooting range. Adding tricalcium phosphate, hydroxyapatite, rock phosphate and potassium dihydrogen phosphate reduced the concentration of ammonium-nitrate-extractable Pb in the contaminated soil by 78.6%, 48.3%, 40.5% and 80.1%, respectively. Insoluble phosphate amendments significantly reduced leached Pb concentration from the column while soluble potassium dihydrogen phosphate compound increased P and Pb concentrations in the leachate. Rock phosphate reduced Pb accumulation in earthworms by 21.9% compared to earthworms in the control treatment. The long-term stability of immobilized Pb was evaluated after 2 years' incubation of the contaminated soil with rock phosphate or soluble phosphate compounds. Bioavailable Pb concentration as measured by simple bioavailability extraction test (SBET) showed the long-term stability of immobilized Pb by P amendments. Therefore, Pb immobilization using phosphate compounds is an effective remediation technique for Pb-contaminated soils.  相似文献   

16.
Soil–Water–Atmosphere–Plant (SWAP) version 2.0 was evaluated for its capability to simulate crop growth and salinity profiles at Agra (India) located in a semi-arid region having deep water table and monsoon climate. The data of 12 conjunctive use treatment combinations simulating cyclic and mixing modes of fresh and saline water for wheat were used to calibrate and validate the model. Absolute deviations between the SWAP simulated and observed relative yields during calibration ranged from 2.5 to 2.9 %. A close agreement in the trend and values of measured and simulated soil salinity profiles was observed. Scenario building simulations carried out with the validated SWAP revealed that the maximum crop yields varied from 97 to 99 % with the best available water (EC 3.6 dS m?1) while the minimum ranged from 65 to 79 % in the treatment with all saline water. Other than this, the relative yield varied from 80 to 98 % in 10 other cyclic and mixing mode treatments. It was established that notwithstanding the seasonal build-up of salts due to saline water use, there would be no long-term build-up of salts as leaching during the monsoon season would render the soil profile salt free at the time of sowing of rabi (winter) crops. Thus, short-term field observations could be used in conjunction with SWAP to show that there seems to be an assured long-term sustainability when saline water is used in conjunctive mode with fresh water in monsoon climatic conditions with deep water table. These results are in conformity with the observation that many farmers in India are using saline and fresh water in conjunctive mode on a long-term basis.  相似文献   

17.
Accurate knowledge of the quality and environmental impact of the highway runoff in Pear River Delta, South China is required to assess this important non-point pollution source. This paper presents the quality characterization and environmental impact assessment of rainfall runoff from highways in urban and rural area of Guangzhou, the largest city of Pear River Delta over 1 year’s investigation. Multiple regression and Pearson correlation analysis were used to determine influence of the rainfall characteristics on water quality and correlations among the constituents in highway runoff. The results and analysis indicates that the runoff water is nearly neutral with low biodegradability. Oil and grease (O&G), suspended solids (SS) and heavy metals are the dominant pollutants in contrast to the low level of nutrient constituents in runoff. Quality of highway runoff at rural site is better than that of at urban site for most constituents. Depth and antecedent dry period are the main rainfall factors influencing quality of highway runoff. The correlation patterns among constituents in highway runoff at urban site are consistent with their dominant phases in water. Strong correlations (r ≥ 0.80) are found among chemical oxygen demand (COD), total phosphorus, Cu and Zn as well as conductivity, nitrate nitrogen and total nitrogen. O&G, COD, SS and Pb in highway runoff at urban site substantially exceed their concentrations in receiving water of Pear River. The soil directly discharged by highway runoff at rural site has contaminated seriously by heavy metals in surface layer accompanying with pH conversion from original acidic to alkaline at present.  相似文献   

18.
Waste management of clinker dust by spreading it on forest soil was studied in a 25-year-old Scots pine stand on acidic sandy soil. Clinker dust (0.5 kg m?2), fertiliser (N, P, K, Mg, 0.05 kg m?2; N 190 kg ha?1) and untreated soil were applied on 120-m2 plots in four replicates. The fertiliser was included to confirm the nutrient limitation in the stand. Clinker dust increased the soil pH by 1.2 units relative to the pH of 4.6 in the untreated soil by the second year. Soil K and Mg concentrations were larger in the dust and fertiliser treatments. Nutrient diagnostics indicated that needles of untreated trees were deficient in N and K. Fertiliser treatment indicated that the growth of trees was limited by N, since the fertiliser tended to increase needle K, N, N/P, needle dry mass and diameters of stem and shoots. By an auxiliary dataset, no effects of the dust and fertiliser on possible excess of the micronutrient Mn were observed. Clinker dust increased needle K concentration, but due to the N limitation, there was no increase in the growth of stems, branches, shoots and needles. It was concluded that in plots of 120 m2 application of clinker dust at a rate of 0.5 kg m?2 was safe for the 21-year-old Scots pine stand in this trial on an acid nutrient-poor sandy soil during 4 years after the treatment.  相似文献   

19.
铅锌尾矿库周边土壤重金属污染特征及环境风险   总被引:4,自引:0,他引:4  
以尾矿库周边土壤为研究对象,用改进BCR法探讨Zn、Pb、Ni、Cu、Cr形态特征,用污染因子Cf和风险评价代码RAC评估环境风险。结果表明:Pb污染最重,总量是区域背景值的2倍多,污染剖面各重金属总量垂向分布均匀,污染已扩散至1 m深;5种金属均主要以残渣态存在,有效态、可交换态Pb质量占比均高于其他4种金属,与表层土壤相比,中、下层污染剖面各金属以更稳定的形态存在;Zn、Ni、Cu、Cr在表层或污染剖面土壤均存在低风险,部分点位Pb存在中度风险。  相似文献   

20.
The toxicity characteristic leaching procedure (TCLP) is the current US-EPA standard protocol to evaluate metal leachability in wastes and contaminated soils. However, application of TCLP to assess lead (Pb) leachability from contaminated shooting range soils may be questionable. This study determined Pb leachability in the range soils using TCLP and another US-EPA regulatory leaching method, synthetic precipitation leaching procedure (SPLP). Possible mechanisms that are responsible for Pb leaching in each leaching protocol were elucidated via X-ray diffraction (XRD). Soil samples were collected from the backstop berms at four shooting ranges, with Pb concentrations ranging from 5,000 to 60,600 mg kg−1 soil. Lead concentrations in the TCLP leachates were from 3 to 350 mg l−1, with all but one soil exceeding the USEPA non-hazardous waste disposal limit of 5 mg l−1. However, continued dissolution of metallic Pb particles from spent Pb bullets and its re-precipitation as cerussite (PbCO3) prevented the TCLP extraction from reaching equilibrium at the end of the standard leaching period (18 h). Thus, the standard one-point TCLP test would either over- or under-estimate Pb leachability in shooting range soils. Lead concentration in the SPLP leachates ranged from 0.021 to 2.6 mg l−1, with all soils above the USEPA regulatory limit of 0.015 mg l−1. In contrast to TCLP, SPLP leaching had reached equilibrium, with regard to both pH and Pb concentrations, within the standard 18 h leaching period, and the analytical SPLP results were in good agreement with those derived from modeling. Thus, we concluded that SPLP is a more appropriate alternative than TCLP for assessing lead leachability in range soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号