首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimating source coefficients for phosphorus site indices   总被引:2,自引:0,他引:2  
Phosphorus release to runoff varies widely for different land-applied organic P sources even when spread at equivalent total P rates. To address this variability, some P site indices include tabulated P source coefficients (PSCs) for differential weighting of applied P materials based on their runoff enrichment potential. Because runoff P can vary widely even within source categories depending on composition, storage, and treatment differences, this study explored a method for estimating PSCs based on the water-extractable P (WEP) content of the applied amendment. Using seven published rainfall-runoff studies that followed National Phosphorus Research Project protocols, runoff dissolved P (RDP) was correlated (r(2) = 0.80) with WEP for multiple surface-applied manures and biosolids. Assuming amendments with WEP >/= 10 g kg(-1) behave as highly soluble P sources and have a maximum PSC of 1.0, an empirical equation was developed for computing source-specific PSCs from laboratory-determined WEP values [PSC = 0.102 x WEP(0.99)]. For two independent runoff experiments, correlations between RDP loss and P source loading rate were improved when loading rates were multiplied by the computed (r(2) = 0.73-0.86) versus generic (r(2) = 0.45-0.48) PSCs. Source-specific PSCs should enhance the ability of assessment tools to identify vulnerable sites and P loss management alternatives, although the exact inclusion process depends on index scaling and conceptual framework.  相似文献   

2.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   

3.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

4.
Poultry litter ash as a potential phosphorus source for agricultural crops   总被引:1,自引:0,他引:1  
Maryland will impose restrictions on poultry litter application to soils with excessive P by the year 2005. Alternative uses for poultry litter are being considered, including burning as a fuel to generate electricity. The resulting ash contains high levels of total P, but the availability for crop uptake has not been reported. Our objective was to compare the effectiveness of poultry litter ash (PLA) and potassium phosphate (KP) as a P source for wheat (Triticum aestivum L.) in acidic soils, without and with limestone application. Two acidic soils (pH 4.25 and 4.48) were studied, unlimed or limed to pH 6.5 before cropping. The PLA and KP were applied at 0, 39, and 78 kg P ha(-1), after which wheat was grown. Limestone significantly increased wheat yield, but the P sources without limestone did not. The two P sources were not significantly different as P fertilizer. At the 78 kg P ha(-1) rate, wheat shoot-P concentrations were 1.10 and 1.12 g kg(-1) for the PLA treatment compared with 0.90 and 0.89 g kg(-1) for KP in the nonlimed and limed soils, respectively. Trace element concentrations in wheat shoots from the PLA treatment were less than or equal to KP and the control. The low levels of water-soluble P and metals in the soils and the low metal concentrations in wheat suggest that PLA is an effective P fertilizer. Further studies are needed to determine the optimum application rate of PLA as a P fertilizer.  相似文献   

5.
Laboratory stream microcosms have been used to study transport, fate, and effects of toxic substances in stream ecosystems. Several general concerns exist in utilizing laboratory streams in this way. We summarize some of the most important and difficult of these problems and endeavor to provide theoretical understanding, evaluation, and empirical approaches necessary for making laboratory stream ecosystem studies more useful in solving problems of toxic substance behavior in natural stream ecosystems. Well-designed laboratory streams and other microcosms are complex dynamic systems that can contribute to our understanding of the behavior of toxic substances. But such systems are far too complex and dynamic to be employed as bioassay, monitoring, or predictive tools, as individual organisms have been.  相似文献   

6.
Information on the forms of P present in animal manure may improve our ability to manage manure P. In most investigations of manure P composition, only inorganic and total P are determined, and the difference between them is assigned as organic P. In this study, we explored the possibility of identifying and quantifying more specific organic P forms in animal manure with orthophosphate-releasing enzymes. Pig (Sus scrofa) manure and cattle (Bos taurus) manure were first sequentially fractionated into water-soluble P, NaHCO3-soluble P, NaOH-soluble P, HCl-soluble P, and residual P. The fractions were separately incubated with wheat phytase, alkaline phosphatase, nuclease P1, nucleotide pyrophosphatase, or their combinations. The released orthophosphate was determined by a molybdate blue method. Part of the organic P in those fractions could be identified by the enzymatic treatments as phytate (i.e., 39% for pig manure and 17% for cattle manure in water-soluble organic P), simple phosphomonoesters (i.e., 43% for pig manure and 15% for cattle manure in NaOH-soluble organic P), nucleotide-like phosphodiesters (2-12%), and nucleotide pyrophosphate (0-4%). Our data indicate that the enzymatic treatment is an effective approach to identify and quantify the organic P forms present in animal manures.  相似文献   

7.
This study was performed to determine the forms of P and to examine the influence of oven-drying on P forms in different organic amendments. Samples of biosolids, beef and dairy cattle manures, and hog manures from sow and nursery barns were used in this study. Both fresh and oven-dried amendments were analyzed for inorganic (Pi), organic (Po), and total phosphorus using a modified Hedley fractionation technique. Water extracted about 10% of total biosolids P and 30 to 40% of total hog and cattle manure P. The amount of P extracted by NaHCO3 ranged from 21 to 32% of total P in all organic amendments except in the dairy cattle manure with 45% of total P. The labile P fraction (sum of H2O- and NaHCO3-extractable P) was 24% of biosolids P, 60% of hog manure P, and 70% of dairy cattle manure P. The residual P was about 10% in biosolids and cattle manures and 5 to 8% in hog manures. Oven-drying caused a transformation in forms of P in the organic amendments. In hog manures, H2O-extractable Po was transformed to Pi, while in the dairy manure NaHCO3-extractable P was converted to H2O-extractable Pi with oven-drying. Therefore, caution should be exercised in using oven-drying for studies that evaluate forms of P in organic amendments. Overall, these results indicate that biosolids P may be less susceptible to loss by water when added to agricultural land.  相似文献   

8.
Enzymatic hydrolysis of organic phosphorus in swine manure and soil   总被引:5,自引:0,他引:5  
Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.  相似文献   

9.
Sorption dynamics of organic and inorganic phosphorus compounds in soil   总被引:1,自引:0,他引:1  
Phosphorus retention in soils is influenced by the form of P added. The potential impact of one P compound on the sorption of other P compounds in soils has not been widely reported. Sorption isotherms were utilized to quantify P retention by benchmark soils from Indiana, Missouri, and North Carolina when P was added as inorganic P (Pi) or organic P (beta-D-glucose-6-phosphate, G6P; adenosine 5'-triphosphate, ATP; and myoinositol hexaphosphate, IP6) and to determine whether soil P sorption by these organic P compounds and Pi was competitive. Isotherm supernatants were analyzed for pH and total P using standard protocols, while Pi and organic P compounds were assayed using ion chromatography. Under the controlled conditions of this study, the affinity of all soils for P sources followed the order IP6 > G6P > ATP > Pi. Each organic P source had a different potential to desorb Pi from soils, and the order of greatest to least Pi desorption was G6P > ATP > IP6. Glucose-6-phosphate and ATP competed more directly with Pi for sorption sites than IP6 at greater rates of P addition, but at the lesser rates of P addition, IP6 actually desorbed more Pi. Inositol hexaphosphate was strongly sorbed by all three soils and was relatively unaffected by the presence of other P sources. Decreased total P sorption due to desorption of Pi can be caused by relatively small additions of organic P, which may help explain vertical P movement in manured soils. Sorption isotherms performed using Pi alone did not accurately predict total P sorption in soils.  相似文献   

10.
Hydrologic influence on stability of organic phosphorus in wetland detritus   总被引:2,自引:0,他引:2  
Accretion of organic matter in wetlands provides long-term storage for nutrients and other contaminants. Water-table fluctuations and resulting alternate flooded and drained conditions may substantially alter the stability of stored materials including phosphorus (P). To study the effects of hydrologic fluctuation on P mobilization in wetlands, recently accreted detrial material (derived primarily from Typha spp.) was collected from the Everglades Nutrient Removal Project (ENRP), a constructed wetland used to treat agricultural drainage water in the northern Everglades. The detrital material was subjected to different periods of drawdown and consecutive reflooding under laboratory conditions. The 31P nuclear magnetic resonance (31P NMR) spectroscopy analysis revealed that sugar phosphate, glycerophosphate, polynucleotides, and phospholipids (glycerophosphoethanolamine and glycerophosphocholine) were the major forms of P in the detrital material. After 30 d of drawdown, polynucleotides were reduced to trace levels, whereas sugar phosphate, glycerophosphate, and phospholipids remained the major fractions of organic P. Microorganisms seemed to preferentially utilize nucleic acid P, perhaps to obtain associated nutrients including carbon and nitrogen. At the end of the 30-d reflooding period, cumulative P flux from detritus to water column accounted for 3% of the total P (< or = 15 d of drawdown) and further decreased to 2% at 30 d of drawdown, but increased to 8% at 60 d of drawdown. The drawdown (< or = 30 d) not only reduced P flux to the water column, but also increased the humification and microbial immobilization of P. Excessive drawdown (60 d), however, triggered the release of P into the water column as the water content of detritus decreased from 95 to 11%.  相似文献   

11.
The Influence of mixed and pure working fluids on the performance of organic Rankine cycles (ORCs) is discussed. Specifically, the performance of mixed and pure working fluids is analyzed based on certain characteristics of low-temperature heat source and heat sink. A method of selecting binary zeotropic mixed working fluids that match with different heat sinks is introduced. Thermodynamic processes of ORCs for various heat sources are simulated in Matlab. The performance characteristics of pure and mixed working fluids are compared under different inlet temperatures and temperature gradients of sensible heat sources. The results demonstrate that when the initial temperature of a heat source is lower and its temperature gradient is higher, and the temperature gradient of the heat sink is higher, mixed working fluids have better performance than pure working fluids. However, for the opposite heat source and heat sink situations, pure working fluids perform better. Mixtures with low critical temperature components exhibit the best performance among all working fluids when the temperature gradient of the heat source is large. The analysis also shows that introduction of a recuperator may reduce the cycle efficiency when the heat source temperature is low and the temperature gradient of the heat source is large.  相似文献   

12.
The most viable way to beneficially use animal manure on most farms is land application. Over the past few decades, repeated manure application has shown adverse effects on environmental quality due to phosphorus (P) runoff with rainwater, leading to eutrophication of aquatic ecosystems. Improved understanding of manure P chemistry may reduce this risk. In this research, 42 manure samples from seven animal species (beef and dairy cattle, swine, chicken, turkey, dairy goat, horse, and sheep) were sequentially fractionated with water, NaHCO?, NaOH, and HCl. Inorganic (P(i)), organic (P(o)), enzymatic hydrolyzable (P(e); monoester-, DNA-, and phytate-like P), and nonhydrolyzable P were measured in each fraction. Total dry ash P (P(t)) was measured in all manures. Total fractionated P (P(ft)) and total P(i) (P(it)) showed a strong linear relationship with P(t). However, the ratios between P(ft)/P(t) and P(it)/P(t) varied from 59 to 117% and from 28 to 96%, respectively. Water and NaHCO? extracted most of the P(i) in manure from ruminant+horse, whereas in nonruminant species a large fraction of manure P was extracted in the HCl fraction. Manure P(e) summed over all fractions (P(et)) accounted for 41 to 69% of total P(0) and 4 to 29% of P(t). The hydrolyzable pool in the majority of the manures was dominated by phytate- and DNA-like P in water, monoester- and DNA-like P in NaHCO?, and monoester- and phytate-like P in NaOH and HCl fractions. In conclusion, if one assumes that the P(et) and P(it) from the fractionation can become bioavailable, then from 34 to 100% of P(t) in animal manure would be bioavailable. This suggests the need for frequent monitoring of manure P for better manure management practices.  相似文献   

13.
Enzymatic hydrolysis and mineralization of organic phosphorus (P) were determined in surface water samples collected from inflow and outflow of a submerged aquatic vegetation (SAV)-dominated treatment wetland of the Florida Everglades. Water samples were fractionated into three size fractions (> 0.4 micron, < 0.4 to > 0.05 micron, and < 0.05 micron) with a sequential flow filtration technique. The fractionated water samples were incubated to hydrolyze with alkaline phosphatase (APase) and phosphodiesterase (PDEase), and to mineralize at different redox and pH. Unlike APase, which hydrolyzed < or = 10% of organic P, PDEase hydrolyzed > or = 71% of organic P in unfiltered water from both inflow and outflow waters, suggesting the domination of bioavailable diester P in the water. Phosphodiesterase completely hydrolyzed organic P in the < 0.4- to > 0.05-micron and < 0.05-micron fractions, as compared with < or = 35% in the > 0.4-micron fraction. However, the P mineralization in inflow and outflow waters at different redox and pH showed that P associated with particulate > 0.4 micron had been mineralized the most. Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy showed that surficial sediments from the inflow region contained a high proportion of polynucleotides, nucleoside monophosphates, and previously unreported glycerophosphoethanolamine and phosphoenolpyruvates. However, at the outflow, the relative proportion of polynucleotides and nucleoside monophosphates was reduced substantially. This suggests that the SAV wetland may sequester P via accretion of organic matter.  相似文献   

14.
There is considerable concern about pollution of surface waters with P. Although most of the research has focused on inorganic P in surface runoff, it has recently become possible to easily follow the fate of soluble organic P forms in soils and waters. Two experiments were performed to compare the relative mobility and soil fixation affinity of orthophosphate monoesters, orthophosphate diesters, and soluble inorganic P. We used three P substrates, 4-methylumbelliferyl phosphate (MUP), deoxyribonucleic acid (DNA), and KH(2)PO(4) in (i) a soil column experiment and (ii) a soil P adsorption test tube experiment. Shortly after columns were prepared, approximately two pore volumes of 0.005 M CaCl(2) were passed through 25 cm length columns containing 10 cm of loamy sand amended with approximately 10 mg P as MUP, DNA, or KH(2)PO(4) above 15 cm of nonamended loamy sand. The total net quantity of 757.8 microg P 2L(-1) of orthophosphate diesters in the leachate from the DNA columns exceeded the net quantity of orthophosphate monoesters in leachate from the MUP columns (4.6 microg P 2L(-1)) and soluble inorganic P from the KH(2)PO(4) columns (34.0 microg P 2L(-1)). Adsorption of soluble organic and inorganic P in the test tube experiment yielded similar results: DNA, containing orthophosphate diesters, had a relatively low affinity for soils. In both experiments, high concentrations of other P compounds were identified in samples treated with organic P substrates, suggesting enzymatic hydrolysis by native soil phosphatase enzymes. These findings indicate that repeated application of organic forms of P could lead to significant leaching of P to ground water.  相似文献   

15.
This research combines laboratory and field studies with computer simulation to characterize the amount of plant-available nitrogen (PAN) released when municipal biosolids are land-applied to agronomic crops. In the laboratory studies, biosolids were incubated in or on soil from the land application sites. Mean biosolids total C, organic N, and C to N ratio were 292 g kg(-1), 41.7 g kg(-1), and 7.5, respectively. Based on CO2 evolution at 25 degrees C and optimum soil moisture, 27 of the 37 biosolids-soil combinations had two decomposition phases. The mean rapid and slow fraction rate constants were 0.021 and 0.0015 d(-1), respectively, and the rapid fraction contained 23% of the total C assuming sequential decomposition. Where only one decomposition phase existed, the mean first order rate constant was 0.0046 d(-1). The mean rate constant for biosolids stored in lagoons for an extended time was 0.00097 d(-1). The only treatment process that was related to biosolids treatment was stabilization by storage in a lagoon. Biosolids addition rates (dry basis) ranged from 1.3 to 33.8 Mg ha(-1) with a mean value of 10.6 Mg ha(-1). A relationship between fertilizer N rate and crop response was used to estimate observed PAN at each site. Mean observed PAN during the growing season was 18.9 kg N Mg(-1) or 37% of the biosolids total N. Observed PAN was linearly related to biosolids total N. Predicted PAN using the computer model Decomposition, actual growing-season weather, actual analytical data, and laboratory decomposition kinetics compared well with observed PAN. The mean computer model prediction of growing-season PAN was 19.2 kg N Mg(-1) and the slope of the regression between predicted and observed PAN was not significantly different from unity. Predicted PAN obtained using mean decomposition kinetics was related to predicted PAN using actual decomposition kinetics suggesting that mean rate constants, actual weather, and actual analytical data could be used in estimation of PAN. There was a linear relationship between predicted N mineralization for the growing season and for the first year. For this study, the mean values for the growing season and year were 27 and 37% of the organic N, respectively.  相似文献   

16.
Following a period of prolonged drought or intentional lake level drawdown, large littoral areas that once contained submersed aquatic vegetation (SAV) are reinundated when lake levels rise. A complete assessment of the contribution made by decomposing SAV to the in-lake phosphorus (P) concentration is important in both the management of Lake Okeechobee and understanding basic P processes. The P contribution to the open waters of Lake Okeechobee from a rapid inundation of exposed SAV was calculated by four methods: cores of field-desiccated SAV, cores of lab-desiccated SAV in the presence and absence of sediments, in situ decomposition, and sequential macrophyte harvesting. P releases, given such an episodic event, were similar among the four methods, ranging from 116±48 to 384±528 mg/m2 in the absence of sediment. When SAV is in contact with sediment, which is the realistic field situation, the amount of P released was four times less (30±14 mg/m2) than in the absence of sediment. The calculated P releases would result in total P concentration increases in the lake from 2 to 15 μg/liter (upper 95% CI=2–25 μg/liter) in the absence of sediment; only 1 μg/liter increase was predicted when SAV released P in contact with sediment. Thus it is unlikely that a significant rise in total P concentrations in the limnetic zone of the lake would occur from the export of P released during the desiccation of SAV in the littoral-marsh zone during a drawdown.  相似文献   

17.
The soil organic partition coefficient (Koc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting Koc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the Koc of hydrophobic organic chemicals (HOCs), over a log Koc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k'w) could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k'w) with various volume fractions of methanol (symbol in text). The important effects of solute activity coefficients in water on k'w and Koc were illustrated. Hence, the correlation between log Koc and log k'w (and log k') exists in the soil. The correlation coefficient (r) of the log Koc vs. log k'w correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log Koc -log k' correlations were no less than 0.968, with (symbol in text)ranging from 0 to 0.50. The smaller the (symbol in text), the higher the r. Therefore, it is recommended that the eluent of smaller (symbol in text), such as water, be used for accurately estimating Koc. Correspondingly, the r value of the log Koc -log k'w correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict Koc indirectly from a correlation with k'w than the reversed-phase liquid chromatographic (RPLC) one.  相似文献   

18.
Reduction-induced phosphorus (P) release from particles transported by field runoff has been poorly studied for want of a method that could be used for large surveys. To rectify this shortcoming, we modified the bicarbonate-dithionite (BD) extraction step of a sediment P speciation scheme for analyzing redox-sensitive P in runoff without sample preconcentration. The extraction comprised the addition of bicarbonate (pH buffer) and dithionite (reducing agent) into a runoff sample, 15 min of gentle shaking, filtration, and sample digestion. The samples were greatly reduced (Eh < -200 mV), and Fe and P were solubilized, but Al solubility was not increased. Phosphorus release from rock phosphates (calcium phosphates) was greater in the BD extraction than in water or bicarbonate solution, although no more than 0.2% of the total P was released. For runoff from a very fine Typic Cryaquept, the particulate phosphorus (PP) versus BD-PP relationship was linear up to a PP concentration of about 1.0 mg L(-1), but over the whole PP range studied (up to 2.6 mg L(-1)) somewhat better described by an exponential equation (BD-PP = 0.297 x PP(0.766); r2 = 0.91, n = 79). The minimum detectable value given by the method was relatively low, 0.023 mg L(-1), but reproducibility varied, with the coefficient of variation for 10 samples analyzed with 5 replicates ranging from 1.8 to 28.5%. Considering the variable reproducibility of the results and the lack of suitable reference material, the method needs further refinement and testing if it is to be used for quantitative determination of redox-sensitive P in runoff.  相似文献   

19.
Use of anionic polyacrylamide (PAM) to control phosphorus (P) losses from a Chinese purple soil was studied in both a laboratory soil column experiment and a field plot experiment on a steep slope (27%). Treatments in the column study were a control, and PAM mixed uniformly into the soil at rates of 0.02, 0.05, 0.08, 0.10, and 0.20%. We found that PAM had an important inhibitory effect on vertical P transport in the soil columns, with the 0.20% PAM treatment having the greatest significant reduction in leachate soluble P concentrations and losses resulting from nine leaching periods. Field experiments were conducted on 5 m wide by 21 m long natural rainfall plots, that allowed collection of both surface runoff and subsurface drainage water. Wheat was planted and grown on all plots with typical fertilizer applied. Treatments included a control, dry PAM at 3.9 kg ha?1, dry PAM at 3.9 kg ha?1 applied together with lime (CaCO3 at 4.9 t ha?1), and dry PAM at 3.9 kg ha?1 applied together with gypsum (CaSO4·2H2O at 4 t ha?1). Results from the field plot experiment in which 5 rainfall events resulted in measurable runoff and leachate showed that all PAM treatments significantly reduced runoff volume and total P losses in surface runoff compared to the control. The PAM treatments also all significantly reduced water volume leached to the tile drain. However, total P losses in the leachate water were not significantly different due to the treatments, perhaps due to the low PAM soil surface application rate and/or high experimental variability. The PAM alone treatment resulted in the greatest wheat growth as indicated by the plant growth indexes of wheat plant height, leaf length, leaf width, grain number per head, and dried grain mass. Growth indexes of the PAM with Calcium treatments were significantly lesser. These results indicate that the selection and use of soil amendments need to be carefully determined based upon the most important management goal at a particular site (runoff/nutrient loss control, enhanced plant growth, or a combination).  相似文献   

20.
Most bacterial source tracking (BST) methods are too expensive for most communities to afford. We developed targeted sampling as a prelude to BST to reduce these costs. We combined targeted sampling with three inexpensive BST methods, Enterococcus speciation, detection of the esp gene, and fluorometry, to confirm the sources of fecal contamination to beaches on Georgia's Jekyll and Sea Islands during calm and stormy weather conditions. For Jekyll Island, the most likely source of contamination was bird feces because the percentage of Ent. faecalis was high (30%) and the esp gene was not detected. For the Sea Island beach during calm conditions, the most likely sources of fecal contamination were leaking sewer lines and wildlife feces. The leaking sewer lines were confirmed with fluorometry and detection of the esp gene. For the Sea Island beach during stormflow conditions, the most likely sources of fecal contamination were wildlife feces and runoff discharging from two county-maintained pipes. For the pipes, the most likely source of contamination was bird feces because the percentage of Ent. faecalis was high (30%) and the esp gene was not detected. Sediments were also a reservoir of fecal enterococci for both Jekyll and Sea Islands. Combining targeted sampling with two or more BST methods identified sources of fecal contamination quickly, easily, and inexpensively. This combination was the first time targeted sampling was conducted during stormy conditions, and the first time targeted sampling was combined with enterococcal speciation, detection of the esp gene, and fluorometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号