首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Protecting structural features, such as tree-related microhabitats (TreMs), is a cost-effective tool crucial for biodiversity conservation applicable to large forested landscapes. Although the development of TreMs is influenced by tree diameter, species, and vitality, the relationships between tree age and TreM profile remain poorly understood. Using a tree-ring-based approach and a large data set of 8038 trees, we modeled the effects of tree age, diameter, and site characteristics on TreM richness and occurrence across some of the most intact primary temperate forests in Europe, including mixed beech and spruce forests. We observed an overall increase in TreM richness on old and large trees in both forest types. The occurrence of specific TreM groups was variably related to tree age and diameter, but some TreM groups (e.g., epiphytes) had a stronger positive relationship with tree species and elevation. Although many TreM groups were positively associated with tree age and diameter, only two TreM groups in spruce stands reacted exclusively to tree age (insect galleries and exposed sapwood) without responding to diameter. Thus, the retention of trees for conservation purposes based on tree diameter appears to be a generally feasible approach with a rather low risk of underrepresentation of TreMs. Because greater tree age and diameter positively affected TreM development, placing a greater emphasis on conserving large trees and allowing them to reach older ages, for example, through the establishment of conservation reserves, would better maintain the continuity of TreM resource and associated biodiversity. However, this approach may be difficult due to the widespread intensification of forest management and global climate change.  相似文献   

2.
Most of the old-growth redwood ( Sequoia sempervirens ) in California has been cut; regenerating forests will probably never resemble those that were harvested, and what old growth remains on private land occurs in small, isolated remnant patches. The landscapes in which these stands occur differ so markedly from their original condition that their value as habitat to many species of wildlife, including bats, is unknown. Previous research in unfragmented redwood forests demonstrated that bats use basal hollows in old-growth redwoods as roosts. We sought to determine whether bats use similar old-growth trees as roosts when they occur in small, remnant patches of isolated old growth on commercial forest land. We compared bat occurrence in remnant and contiguous stands by collecting guano in traps suspended in hollows and by monitoring flight activity with ultrasonic bat detectors. Hollows in trees within the remnant stands had significantly more guano deposited per tree than the trees within the contiguous forest. The mean numbers of bat passes per night were statistically indistinguishable between the two treatments, although mean flight activity in the remnant stands was greater than in the contiguous forest. Bats frequently used basal hollows in small (<5 ha) stands of remnant old growth, which may be due to the closer proximity of remnants to stream courses, to their greater interface with edge where foraging success may be greater, or to the fact that the lower density of hollow-bearing trees in remnants than in contiguous forest favored greater use per tree. Significant use of small, residual old-growth redwood provides reason to maintain these remnants in managed landscapes as potentially important habitat for forest bats.  相似文献   

3.
The purpose of this research was to test the precision of a diameter increment model for the estimation of future periodic diameter increment. Individual trees of Crimean pine (Pinus nigra Arnold) and Calabrian pine (Pinus brutia Ten.) located in both natural and plantation stands were selected. For that reason, normal closed canopy, pure, even-aged and undisturbed stands were examined. In 2002, plots were sampled in three natural and three plantation stands in Isparta region of Turkey. The number of sampling points in sample plots ranged from 19 to 55. In each sampling point, a subject tree and six competitors were selected. In each sampling point, subject tree and competitor trees were stem mapped (x and y coordinate system), and diameter (dbh), total height, age, and 10-yrs radial increment recorded. The predictors of a distance dependent diameter increment model were chosen that included tree level (diameter (d), competition index (CI), and age (t)) and stand level (basal area (G), and site index (SI)) characteristics as well as their transformations. The best fit index of the regression model was pursued in trials with variable combinations. The models explained 65%, 60%, 68% and 50% of the variation in individual tree diameter increment of Crimean pine and Calabrian pine for both natural and plantations stands, respectively. These models can be estimated diameter increment of individual trees at highly significant level (p<0.001).  相似文献   

4.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

5.
Young forests can be manipulated in diverse ways to enhance their ecological values. We used stem maps from two dense, second-growth stands in western Washington and a spatially explicit light model (tRAYci) to simulate effects of five silvicultural manipulations on diameter distribution, species composition, spatial patterning, and light availability. Each treatment removed 30% of the basal area, but differed in how trees were selected for removal. Three primary treatments were thin from below (removing the smallest trees), random thin (removing trees randomly), and gap creation (removing all trees in circles ∼1 tree height in diameter). Two additional treatments combined elements of these approaches: random ecological thin (a mixture of thin from below and random thin) and structured ecological thin (a mixture of thin from below and gap creation).  相似文献   

6.
7.
We studied the effects of stand parameters (crown closure, basal area, stand volume, age, mean stand diameter number of trees, and heterogeneity index) and geomorphology features (elevation, aspect and slope) on tree species diversity in an example of untreated natural mixed forest stands in the eastern Black Sea region of Turkey. Tree species diversity and basal area heterogeneity in forest ecosystems are quantified using the Shannon-Weaver and Simpson indices. The relationship between tree species diversity basal area heterogeneity stand parameters and geomorphology features are examined using regression analysis. Our work revealed that the relationship between tree species diversity and stand parameters is loose with a correlation coefficient between 0.02 and 0.70. The correlation of basal area heterogeneity with stand parameters fluctuated between 0.004 and 0.77 (R2). According to our results, stands with higher tree species diversity are characterised by higher mean stand diameter number of diameter classes, basal area and lower homogeneity index value. Considering the effect of geomorphology features on tree species or basal area heterogeneity we found that all investigated relationships are loose with R < or = 0.24. A significant correlation was detected only between tree species diversity and aspect. Future work is required to verify the detected trends in behaviour of tree species diversity if it is to estimate from the usual forest stand parameters and topography characteristics.  相似文献   

8.
In this study, diameter growth models for three species growing in mixed-stands of Coastal British Columbia (BC), Canada, under a variety of silvicultural treatments were developed. The three species were: Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western redcedar (Thuja plicata Donn). A Box and Lucas model (1959) was initially fitted to the diameter growth series for each tree, as this model is very flexible and was based on processes reflective of the metabolic processes governing tree growth. Next, a random coefficients modelling approach (i.e., parameter prediction approach) was used to modify the estimated parameters for each species using functions of tree size and stage of development, site productivity, and inter-tree competition variables, while accounting for temporal correlation within trees. Impacts of fertilization on diameter growth were estimated by including the time since fertilization as an additional variable. Since state variables that are changed as a result of thinning were already in the model, accurate results post-thinning were obtained with no changes to the model. For the combined effects of thinning and fertilization, a two-step additive approach was used, where the state variables were changed following thinning and the diameter increment was modified for fertilization using the time since fertilization variable. Results indicated that multiple treatments sustain a change in growth for a longer time period following treatment than thinning or fertilization alone.  相似文献   

9.
Spatial elements of mortality risk in old-growth forests   总被引:3,自引:0,他引:3  
For many species of long-lived organisms, such as trees, survival appears to be the most critical vital rate affecting population persistence. However, methods commonly used to quantify tree death, such as relating tree mortality risk solely to diameter growth, almost certainly do not account for important spatial processes. Our goal in this study was to detect and, if present, to quantify the relevance of such processes. For this purpose, we examined purely spatial aspects of mortality for four species, Abies concolor, Abies magnifica, Calocedrus decurrens, and Pinus lambertiana, in an old-growth conifer forest in the Sierra Nevada of California, USA. The analysis was performed using data from nine fully mapped long-term monitoring plots. In three cases, the results unequivocally supported the inclusion of spatial information in models used to predict mortality. For Abies concolor, our results suggested that growth rate may not always adequately capture increased mortality risk due to competition. We also found evidence of a facilitative effect for this species, with mortality risk decreasing with proximity to conspecific neighbors. For Pinus lambertiana, mortality risk increased with density of conspecific neighbors, in keeping with a mechanism of increased pathogen or insect pressure (i.e., a Janzen-Connell type effect). Finally, we found that models estimating risk of being crushed were strongly improved by the inclusion of a simple index of spatial proximity. Not only did spatial indices improve models, those improvements were relevant for mortality prediction. For P. lambertiana, spatial factors were important for estimation of mortality risk regardless of growth rate. For A. concolor, although most of the population fell within spatial conditions in which mortality risk was well described by growth, trees that died occurred outside those conditions in a disproportionate fashion. Furthermore, as stands of A. concolor become increasingly dense, such spatial factors are likely to become increasingly important. In general, models that fail to account for spatial pattern are at risk of failure as conditions change.  相似文献   

10.
Fornara DA  Du Toit JT 《Ecology》2007,88(1):200-209
We measured browsing-induced responses of Acacia trees to investigate "browsing lawns" as an analogy to grazing lawns in a semiarid eutrophic African savanna. During the two-year field study, we measured plant tolerance, resistance, and phenological traits, while comparing variation in leaf nitrogen and specific leaf area (SLA) across stands of Acacia nigrescens, Miller, that had experienced markedly different histories of attack from large herbivores. Trees in heavily browsed stands developed (1) tolerance traits such as high regrowth abilities in shoots and leaves, high annual branch growth rates, extensive tree branching and evidence of internal N translocation, and (2) resistance traits such as close thorn spacing. However, phenological "escape" responses were weak even in heavily browsed stands. Overall, browsing strongly affected plant morpho-functional traits and decreased both the number of trees carrying pods and the number of pods per tree in heavily browsed stands. Hence, there is experimental evidence that tolerance and resistance traits may occur simultaneously at heavily browsed sites, but this comes at the expense of reproductive success. Such tolerance and resistance traits may coexist if browsers trigger and maintain a positive feedback loop in which trees are continually investing in regrowth (tolerance), and if the plant's physical defenses (resistance) are not nutritionally costly and are long-lived. Our results confirm that chronic browsing by ungulates can maintain A. nigrescens trees in a hedged state that is analogous to a grazing lawn. Further research is needed to fully understand the long-term effects of chronic browsing on reproduction within such tree populations, as well as the overall effects on nutrient cycling at the ecosystem level.  相似文献   

11.
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.  相似文献   

12.
In British Columbia, Canada, management efforts used to control mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have included treatment of infested trees with an organic arsenic pesticide, monosodium methanearsonate (MSMA). Cumulative pesticide applications over a large geographic area have generated concerns about arsenic loading in the environment and potential toxicity to nontarget wildlife. We investigated woodpecker foraging patterns in infested stands with and without MSMA treatment using a combination of tree debarking indices, point count surveys, and radiotelemetry methods in addition to insect flight traps to measure mountain pine beetle emergence. Debarking indices indicated woodpecker foraging of MSMA-treated trees was significantly lower than nontreated trees in all sampling years. However, approximately 40% of MSMA trees had some evidence of foraging. Focal observations of foraging woodpeckers and point count surveys in MSMA treatment areas further confirmed that several species of woodpeckers regularly used MSMA stands during the breeding season. Radio-tagged Hairy (Picoides villosus) and Three-toed (Picoides dorsalis) Woodpeckers spent on average 13% and 23% (range 0-66%) of their time, respectively, in treated stands, despite the fact that these areas only comprised on average 1-2% of their core home range (1 km2). MSMA strongly reduced the emergence of several bark beetle (Coleoptera, Scolytidae) species including the mountain pine beetle, and there was a highly significant positive relationship between Dendroctonus beetle abundance and Three-toed Woodpecker abundance. This study identifies the potential negative impact that forest management practices using pesticides can have on woodpecker populations that depend on bark beetles and their host trees.  相似文献   

13.
Boyden S  Binkley D  Stape JL 《Ecology》2008,89(10):2850-2859
Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.  相似文献   

14.
Extremely old trees have important roles in providing insights about historical climatic events and supporting cultural values, yet there has been limited work on their global distribution and conservation. We extracted information on 197,855 tree cores from 4854 sites and combined it with other tree age (e.g., the OLDLIST) data from a further 156 sites to determine the age of the world's oldest trees and quantify the factors influencing their global distribution. We found that extremely old trees >1000 years were rare. Among 30 individual trees that exceeded 2000 years old, 27 occurred in high mountains. We modeled maximum tree age with climatic, soil topographic, and anthropogenic variables, and our regression models demonstrated that elevation, human population density, soil carbon content, and mean annual temperature were key determinants of the distribution of the world's oldest trees. Specifically, our model predicted that many of the oldest trees will occur in high-elevation, cold, and arid mountains with limited human disturbance. This pattern was markedly different from that of the tallest trees, which were more likely to occur in relatively more mesic and productive locations. Global warming and expansion of human activities may induce rapid population declines of extremely old trees. New strategies, including targeted establishment of conservation reserves in remote regions, especially those in western parts of China and the United States, are required to protect these trees.  相似文献   

15.
The present paper reports how stand size-structure dynamics due to competition between different-sized trees affect long-term forested water balance in Japanese cool-temperate planted stands (evergreen coniferous Cryptomeria japonica and deciduous coniferous Larix kaempferi stands) using a fully coupled multi-layered meteorological surface physics—terrestrial ecosystems model. The simulation captured the well-known annual variation in leaf area index (LAI) accurately with stand age in monocultured and even-aged stands; the occurrence of maximum LAI during the early growth stage and then a gradual decline followed by a steady state after the maximum LAI. The simulations also detected a high dependency of annual evapotranspiration (AETr) on LAI with stand age that is well known by prior observational researches. In the C. japonica (shade-tolerant late-successional species) stand, the relationship between annual net primary productivity of an individual tree (NPPind) and individual tree mass (w) changed from linear to a convex curve during self-thinning, indicating that the degree of asymmetric tree competition intensified with forest stand development. The higher degree of competitive asymmetry characterized by the convex-shaped NPPind-w relationship produced greater size inequality, i.e., the formation of trees stratified by height. Under such conditions, AETr and annual transpiration (ATr) were mainly regulated by larger trees. On the other hand, the NPPind-w relationships in the L. kaempferi (shade-intolerant early-successional species) stand were linear throughout the simulated period, indicating the lower degree of competitive asymmetry. Under such conditions, the growth of intermediate-sized trees was enhanced and these trees became a dominant source of AETr (and also ATr) during self-thinning. Furthermore, the sensitivity analysis of the effects of ecophysiological parameters such as foliage profile (i.e., vertical distribution of leaf area density) of an individual tree (distribution pattern is described by the parameter η), the maximum carboxylation velocity (Vcmax0) and biomass allocation pattern of individual plant growth (μ1) on AETr, ATr and annual runoff (ARoff) showed that the temporal trends of AETr, ATr, ARoff and NPPind-w relationships were completely the same as those in the control simulations. However, the NPPind-w relationship during self-thinning indicated higher degrees of competitive asymmetry when η or Vcmax0 were greater than those in the control simulation and generated greater AETr and ATr and thus smaller ARoff. We found that more asymmetric tree competition brings about greater size inequality between different-sized trees and thus more evapotranspiration and less runoff in a forest stand. Overall, our simulation approach revealed that not only LAI dynamics but also plant competition, and thus size-structure dynamics, in a forest ecosystem are essential to long-term future projections of forested water balance.  相似文献   

16.
This paper presents the growth response of 25 yr old Lebanon cedar (Cedrus libani A. Rich.) plantation to thinnings of different intensities in Isparta in western Turkey. The thinning intensity was measured by using the residual basal area (%) as parameter. In spring of 2005, three treatments were tested; light, moderate and heavy thinning with respectively 10, 25 and 35% of basal area removed. The statistical design of the experiment was a randomized incomplete block with two blocks and three treatments. Variables such as diameter at breast height (diameter) and height were measured. Growth rate ratios of diameter in moderately thinned and heavily thinned stands were 1.02 and 1.03, respectively. Basal area growth rates in moderately thinned and heavily thinned plots were 0.93 and 1.05, respectively. The largest values for the mean tree were observed with the heaviest thinning treatment. Absolute diameter increment was positively correlated with initial diameter in all plots. Relative diameter growth was negatively correlated with initial diameter. Growth rate interpretations were supported by analysis of variance using Duncan's test of range multiple. The results obtained show significant differences between treatments for tree height growth, for the two inventories carried out (2005, 2008). However diameter basal area and volume were no found between treatments for tree.  相似文献   

17.
Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.  相似文献   

18.
The paper is about the accurate (i.e. unbiased and precise) and efficient estimation of structural indices in forest stands. We present SIAFOR, a computer programme for the calculation of four nearest-neighbour indices, which describe the spatial arrangement of tree positions, the distribution pattern of species, and the size differentiation between trees. The study uses SIAFOR as a sampling simulator in eight completely stem-mapped forest stands of varying area and structural complexity. We statistically evaluate two sample types (distance and plot sampling), comparing sampling error, bias and minimum sample size for index estimation. We introduce the concepts of measurement expansion factor (MEF) and design expansion factor (DEF) for the technical evaluation of sample type efficiency (optimal sample type). Results indicate that sampling error can reach high levels and that minimum sample sizes for index estimation often amply exceed the limit of 20% of tree density or 20 trees per species per hectare, that we set as the highest feasible sample size in normal situations. We found clear feasibility limits (in terms of minimal tree densities and reachable accuracy levels) for the estimation of all investigated indices. Generally, equal or higher sample sizes are needed for plot sampling than for distance sampling to reach equal accuracy levels. Nevertheless, plot sampling resulted more efficient for the estimation of tree size differentiation at low to medium accuracy levels. For all other investigated indices distance sampling resulted more efficient than plot sampling. Minimum sample size increases with accuracy and is negatively correlated with tree density. At a given accuracy level minimum sample size is highest for the estimation of relative mingling and lowest for tree size differentiation; furthermore it is generally lower in large stands than in small ones. Because of the consistency of our conclusions in all of the investigated stands, we think they apply in most stands of similar area (between 1 and 10 ha) and species diversity (not more than four species).  相似文献   

19.
20.
细叶桉造林密度试验初报   总被引:1,自引:0,他引:1  
在细叶桉造林试验中,设计了7种密度,结果表明,在造林的当年,高密度林分能较早形成林分环境,有利于早期生长,而后来其个体间较早开始进行营养空间的竞争,部分个体生长受到抑制。随着时间的推移,高密度林分不利于冠径的发展。相应地低密度林分呈现出径生长较快的趋势,并且这种趋势随着树木长大而愈来愈明显。单株材积随密度的变化趋势与径的变化规律相一致。林分的蓄积量更大程度地受株数的作用,密度越大,蓄积量越大。建议细叶桉小径材和纸浆材的造林密度为2500株/hm^2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号