首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同阳离子对Fe~0还原硝酸盐的影响   总被引:1,自引:0,他引:1  
由于水中硝酸盐污染的普遍性、难去除性和对人体健康的潜在危害性而引起人们的广泛关注。通过批实验,考察了不同阳离子(Fe2+、Fe3+和Cu2+)对Fe0还原硝酸盐的影响。结果表明,由于加入阳离子可直接或间接地增加溶液中的Fe2+而都能促进硝酸盐的还原,作用顺序为Fe3+Fe2+Cu2+;Fe2+对硝酸盐的还原具有重要作用,并随着反应的进行,转化为铁氧化物附着在铁表面而降低铁的活性;硝酸盐还原的主要产物为氨氮,亚硝酸盐只在反应初期有少量积累,尤其是加Cu2+的体系中,但随后都很快降低;在所有体系中,检测到的三氮(NO3--N、NO2--N和NH4+-N)之和只占理论总氮的51.5%~82.6%;动力学分析表明,硝酸盐的还原在不加阳离子的体系中更符合一级反应,而加了阳离子的处理更符合Lo-gistic模型。本研究结果阐明了Fe2+对Fe0还原硝酸盐的重要性。  相似文献   

2.
在常温常压下利用零价铁(Fe0)还原土壤中的2-氯硝基苯(o-CNB),研究反应条件对还原率的影响以及反应产物在不同反应阶段的变化.GC-MS检测结果显示,o-CNB在还原过程中先生成2-氯亚硝基苯,最终生成2-氯苯胺.反应时间、Fe0用量、温度和土壤初始pH值等均会对o-CNB的还原率产生影响,其中土壤初始pH值控制在偏酸性、土壤温度较高时能显著提高其还原率.当o-CNB的初始浓度约为2.5×10-6 mol/g,Fe0加入量是25 mg/g时,经过4 h反应,o-CNB的还原率可达99%以上.此外,还初步探讨了Fe0还原o-CNB的反应机理.  相似文献   

3.
以焦炭为载体,Na2SiO3为粘结剂,制备了负载型铁改性纳米TiO2光催化剂,并研究了该催化剂在太阳光照射下降解亚甲基兰染料废水的效果,通过正交和单因素优化试验,探讨了影响染料废水降解效果的主要因素,研究结果表明,影响降解因素的大小次序是:煅烧时间>铁掺杂量>Na2SiO3质量百分比>煅烧温度.本光催化剂制备的最佳制备条件是:以20%的Na2SiO3溶液为粘结剂,掺杂2%的Fe,400℃煅烧温度下煅烧3 h.以太阳光为光源,亚甲基兰染料废水的降解率可达到87.1%.  相似文献   

4.
在Ru/Al2O3催化剂上用H2对SO2选择性催化还原的研究   总被引:2,自引:0,他引:2  
本文对用H2来使SO2选择性催化还原为单质硫在Ru/Al2O3催化剂上的行为进行研究.当物料比经过优化确定为SO2/H2=12.8时,在500℃下,SO2的转化率为90%以上,单质硫的产率为70%左右.比较于其他的催化还原SO2的催化剂,本催化剂采用金属而不是金属硫化物,这样既省去了催化剂预硫化的过程,同时也使在有氧条件下的选择性催化还原成为可能.实验考察了O2及水蒸气存在对过程的影响.在实验过程中发现,H2S作为中间产物生成,可推论该过程在催化剂上分两步进行SO2首先在催化剂金属上被H2深度还原为H2S,然后在Al2O3载体的酸性中心上SO2与H2S发生Claus反应产生单质硫.  相似文献   

5.
在Ru/Al2O3催化剂上用H2对SO2选择性催化还原的研究   总被引:3,自引:0,他引:3  
本文对用H2来使SO2选择性催化还原为单质硫在Ru/Al2O3催化剂上的进行了研究,当物料比经过优化确定为SO2/H2=1:2.8时,在500℃下,SO2的转化率为90%以上,单质硫的产率为70%左右,比较于其他的催化还原SO2的催化剂,本催化剂采用金属而不是金属硫化物,这样既省去了催化剂预硫化的过程,同时也使在有氧条件下的选择性催化还原成为可能,实验考察了O2及水蒸气存在对过程的影响,在实验过程中发现,H2S作为中间产物生成,可推论该过程在催化剂上分两步进行:SO2首先在催化剂金属上被H2深度还原为H2S,然后在Al2O3载体的酸性中心上SO2与H2S发生Claud反应产生单质硫.  相似文献   

6.
可见光/H2 O2/海藻酸铁非均相催化降解吖啶橙的研究   总被引:6,自引:0,他引:6  
由海藻酸钠和氯化铁反应制备了海藻酸铁凝胶小球催化剂,考察了该催化剂的吸附和可见光下催化降解吖啶橙的性能.结果表明催化剂的吸附能力随pH升高而提高,且催化剂用量为40个凝胶小球时,可见光下吖啶橙能够在较宽pH值范围内脱色,脱色速率随H2O2的用量增加而增加,该反应符合Arrhenius规律,其表观活化能为49.6 kJ/mol.自由基清除剂的加入不会降低脱色速率,表明催化反应不是羟基自由基的机理,而与高活性的类{ Fe(Ⅳ)=O}高价铁中间产物有关.  相似文献   

7.
可见光/H2 O2/海藻酸铁非均相催化降解吖啶橙的研究   总被引:3,自引:0,他引:3  
由海藻酸钠和氯化铁反应制备了海藻酸铁凝胶小球催化剂,考察了该催化剂的吸附和可见光下催化降解吖啶橙的性能.结果表明催化剂的吸附能力随pH升高而提高,且催化剂用量为40个凝胶小球时,可见光下吖啶橙能够在较宽pH值范围内脱色,脱色速率随H2O2的用量增加而增加,该反应符合Arrhenius规律,其表观活化能为49.6 kJ/mol.自由基清除剂的加入不会降低脱色速率,表明催化反应不是羟基自由基的机理,而与高活性的类{ Fe(Ⅳ)=O}高价铁中间产物有关.  相似文献   

8.
零价铁(Fe0)在水处理过程中有着非常广泛的应用.向Fe0反应体系中曝气,可利用O2还原自发生成H2O2,继而在常温、常压、较宽的pH范围(3~8)内产生·OH等强氧化剂氧化降解有机物.总结了Fe0/O2体系的反应机制,其中主要包括Fe0的双电子传递与Fe2-的单电子传递还原O2产生活性中间体H2O2,以及H2 O2与Fe2+发生Fenton反应产生氧化剂;介绍了pH、曝气方式、溶解氧、Fe0的比表面积及其投加量等因素对氧化剂产量及性质的影响;着重论述了向Fe0/O2体系中加入天然有机物质(NOM)、多金属氧酸盐(POM)等氧化还原媒介,以及草酸盐(C2O42-)、氨三乙酸(NTA)、乙二胺四乙酸(EDTA)等络合剂或引入第二金属形成双金属/O2体系等方法强化体系氧化能力的措施,并提出了Fe0/O2体系未来的研究方向.  相似文献   

9.
生物质气化过程催化剂应用研究进展   总被引:4,自引:0,他引:4  
生物质气化技术已在国内外得到广泛的开发和运用,但由于燃气品位较差,焦油较多,限制了生物质气化气的进一步利用。在生物质气化过程中应用催化剂是一种有效的提升燃气质量和催化裂解焦油的方法,近年来已引起了国内外的广泛注意。本文对国内外生物质催化气化及相关研究进展进行了综合评述,分析了催化剂对减少生物质气化焦油的生成和改进燃料气品质的作用结果, 提出了进一步的研究方向。  相似文献   

10.
以焦炭为载体,Na2SiO3为粘结剂,制备了负载型铁改性纳米TiO3光催化剂,并研究了该催化剂在太阳光照射下降解亚甲基兰染料废水的效果,通过正交和单因素优化试验,探讨了影响染料废水降解效果的主要因素,研究结果表明,影响降解因素的大小次序是:煅烧时间〉铁掺杂量〉Na2SiO3质量百分比〉煅烧温度。本光催化剂制备的最佳制备条件是:以20%的Na2SiO3溶液为粘结剂,掺杂2%的Fe,400℃煅烧温度下煅烧3h。以太阳光为光源,亚甲基兰染料废水的降解率可达到87.1%。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

14.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

15.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

16.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

17.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

18.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号