首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 1990 to 1994 at Alert, Nunavut, Canada, weekly snow samples were collected under low wind conditions to avoid contamination by blowing snow. They were analysed for major ions, Br, and the organic ions methylsulphonate, formate, acetate and propionate. In the Arctic, where annual precipitation is low and blowing snow is common, these observations are unique. On an equivalent weight basis, acids and sea salt in snowfall are mixed approximately equally from December to January but from March to May acids dominate. The acidity of snowfall increases progressively throughout the winter to a May peak of ∼16 μeq l−1. SO42−, Br, and the organic acids acetate, and propionate peak in snowfall after polar sunrise indicate the influence of enhanced photochemical reactions. The greater enrichment of halides relative to sea salt Na+ in snow compared to aerosols indicates that gaseous uptake by snowflakes is important in the removal of these substances from the atmosphere and their deposition on to the Earth's surface. There is a marked difference between the seasonal variation of enrichment of Cl and Br in snow. The latter show a marked increase after polar sunrise while the former does not. These results provide valuable baseline information on the ionic content of fresh snowfall to be used in understanding the results of snowpack chemistry and post-depositional process studies conducted in the high Arctic.  相似文献   

2.
The chemistry of high mountain snowpacks is a result of the long-range atmospheric transport and deposition of elements. Pyrenean snowpacks contain information about the fluxes of elements over SW Europe in winter. Here we analysed Al, Ti, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb in the 2004–05 winter snowpack in the Central Pyrenees, at an altitude range of 1820–3200 m a.s.l. Ni, As, Se and Cd were not detected in most cases. The concentrations of the remaining elements were comparable to those found in other high mountain areas in Europe and North America considered representative of regional background of atmospheric deposition in populated areas. In contrast, our measurements were higher than those of polar areas, which represent the global background. Single measurements of concentrations and snow accumulation were subject to considerable spatial variability, which may be attributable to strong wind drift and other post-depositional processes. The major ions chemistry of the snow indicated three possible origins for the solutes: terrigenous dust, sea salt spray and polluting S and N aerosols. We found no association between Cu, Zn and Pb and any of these possible sources. This observation therefore indicates that these elements were not preferentially bound to any particular kind of aerosol. Snow collected at altitudes of up to 2050 m a.s.l. presented higher concentrations of several elements than snow above this altitude, thereby indicating a local influence. Snow collected above 2300 m a.s.l. was therefore more representative of broad regional inputs. At these higher altitudes, snow was not enriched in Al, Ti, Mn, Fe or As compared with the composition of the upper continental crust and the local lithology, and these elements (except Mn) appeared almost exclusively in the particulate fraction. This observation indicates that Al, Ti, Mn, Fe and As were present mainly as part of dust particles of terrigenous origin. In contrast, Cu, Zn, and Pb presented medium to high enrichment factors and showed a higher proportion of soluble forms, thereby indicating their polluting character.  相似文献   

3.
A first time investigation was performed to establish a chemical baseline for snowfall at Palmer Station Antarctica (64°46′S, 64°05′W) since there was no such record. A chemical baseline for snow could be use to validate climate change studies based on ice core analyses. The snow samples contained (from high to low mass concentration) total organic carbon, chloride, inorganic carbon, sodium, sulfate, magnesium, calcium, potassium, fluoride, ammonium, and nitrate, excluding hydrogen and hydroxide. The pH of these samples ranged between 4.0–6.2. The relatively low nitrate and relatively high sulfate concentrations found in our samples are consistent with the results of other studies for this region of Antarctica. The ions and pH do not appear to favor a particular wind direction during this period. The total deposition of sulfate and flouride via snowfall between 10 January and 10 February is conservatively estimated to be 4.78 and 1.3 kg km-2, respectively.  相似文献   

4.
In forest soils along vertical profiles located in different parts of the Alps, concentrations of persistent organic pollutants (POPs), namely organochlorine pesticides (OCPs) like dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCH), heptachlor, aldrin, dieldrin and mirex, were measured. Though local characteristics of the sites are influenced by numerous factors like orographic and meteorological parameters, forest stand characteristics and humus parameters, we ascertained a marked vertical increase of concentrations of some organochlorine compounds in the soil. On the basis of climatological values of each site, we found that the contamination increase with altitude can be ascribed to a certain ‘cold condensation effect’. In addition, the perennial atmospheric deposition of POPs is controlled by precipitation. Other key parameters explaining the accumulation of POPs are the soil organic carbon stocks, the turnover times, the re-volatilisation and degradation processes, which vary with altitude.  相似文献   

5.
Rain, hail, and snow samples collected in central Alberta have been analyzed for sulfate and chloride content using a conductometric titration method. The mean values of sulfate concentration in rain and hail collected in the region of sulfur extraction gas plants were 2.7 mg/l and 2.9 mg/l respectively. The mean value of the sulfate content of a large number of hail samples collected from one severe storm well removed from a major SO2 source was only 0.6 mg/l. Several snow samples collected in Alberta and southern British Columbia had a mean sulfate content of less than 0.5 mg/l. These results are discussed in terms of the efficiency with which SO2 is removed from the atmosphere by the different precipitation processes. The results strongly suggest that most of the sulfate found in central Alberta precipitation is of local industrial origin.

By comparing the sulfate deposition in precipitation around one isolated gas plant with the known SO2 emission rate, a local atmospheric sulfur budget is derived. This budget indicates that the summertime convective storms are a very efficient mechanism for removing the SO2 from the atmosphere, with between 32 and 46% of the sulfur emitted as SO2 arriving at the ground as sulfate sulfur within a radius of 25 miles of the source. In contrast snow is a very inefficient removal mechanism, since in winter less than 2% of the sulfur emission is deposited in the snowfall near the source.  相似文献   

6.
The deposition of atmospheric nitrogen can be enhanced at high altitude sites as a consequence of cloud droplet deposition and orographic enhancement of wet deposition on hills. The degree to which the increased deposition of nitrogen influences foliar nitrogen concentration in a range of upland plant species was studied in a series of field surveys in northern Britain. A range of upland plant species sampled along altitudinal transects at sites of known atmospheric nitrogen deposition showed marked increases in foliar nitrogen concentration with increasing nitrogen deposition and altitude (and hence with decreasing temperature). For Nardus stricta L., Deschampsia flexuosa (L.) Trin., Calluna vulgaris (L.) Hull, Erica cinerea L. and Hylocomium splendens (Hedw.) Br. Eur. on an unpolluted hill, foliar nitrogen increased by 0.07, 0.12, 0.15, 0.08 and 0.04% dry weight respectively for each 1 kg ha(-1) year(-1) increase in nitrogen deposition. Most species showed an approximately linear relationship between foliar nitrogen concentration and altitude but no trend with altitude for foliar phosphorus concentration. This provided evidence that the tissue nutrient status of upland plants reflects nutrient availability rather than the direct effects of climate on growth. However, differences in the relationship between foliar nitrogen concentration and atmospheric nitrogen deposition for N. stricta sampled on hills in contrasting pollution climates show that the possibility of temperature-mediated growth effects on foliar nitrogen concentration should not be ignored. Thus, there is potential to use upland plant species as biomonitors of nitrogen deposition, but the response of different species to nitrogen addition, in combination with climatic effects on growth, must be well characterised.  相似文献   

7.
Two ice cores from the top of Agassiz Ice Cap, one from a snow scoured and the other from an unscoured zone, cover 80 and 100 yr of snow deposition respectively. The time scale for the cores is based on seasonal ion signals, a known stratigraphic horizon (1962), and a marked volcanic signature of high SO2-4, representing Katmai (1912). A marked increase in the SO2-4 and NO-3 ion which began in the middle of the 19th century is compared with the earlier increase in Greenland and attributed to a different combination of aerosol sources. A case is made for dry deposition of ions in winter, based on the continued presence of winter ion peaks at a site that δ18O indicates has almost no winter snow accumulation. This case is supported by the snowfall record at a nearby Automatic Weather Station, which shows there is very little winter snowfall at these sites, and by the fact that different accumulation rates and ion concentrations at each site effect almost the same ion fluxes. There is no evidence in either of the cores for a change in the levels of pollutant NO-3 and SO2-4 ion concentrations, due to improvement in emission technologies in the western nations, over the last two decades. The lack of change may indicate that Russia is the dominant source for aerosols at this site.  相似文献   

8.
Scavenging ratios for sulfate on the south-central Greenland Ice Sheet at Dye 3 have been computed for 1982–1984. The ratios are based on measured concentrations in snow and estimated concentrations in air. The snow data have been obtained from snowpit samples which were dated by comparing δ18O values with meteorological records. The airborne concentrations have been estimated from data collected at coastal Greenland sites. Scavenging ratios resulting from this process are found to be in the range ~ 100–200 in winter and ~ 200–400 in summer. The greater summer values are attributed to increased riming, resulting in scavenging of sulfate as condensation nuclei and possible oxidation of SO2 in cloudwater droplets. Using the airborne and snowpit concentrations with assumed dry deposition velocities of 0.02–0.05 cms, it is estimated that dry deposition is responsible for roughly 10–30% of the total sulfate deposition on a year-round basis at Dye 3. During portions of the Arctic winter, however, when the snow is unrimed and when there is less precipitation, dry deposition may be dominant.  相似文献   

9.
10.
Acidic rain has been identified as potentially harmful to the aquatic and terrestrial components of the ecosystem. Sulphate measured in rain and snow has been used as a surrogate indicator of acidic deposition. If sulphur dioxide controls are the means to limit acidic deposition, then the association between sulphate and hydrogen ion concentrations in precipitation is an important factor in establishing such limits. Selected data on rain and snowfall chemistry from the National Atmospheric Deposition Program (NADP), the Electric Power Research Institute's SURE, the utility industries' UAPSP, and the Department of Energy's MAP3S were reviewed. Numerical analyses were performed to assess the relationship between hydrogen and sulphate ion concentrations. The strength of the association between hydrogen and sulphate ions varied from site to site. In the Midwestern and Eastern regions, the Pearson correlation coefficient was over 0.50 while in the Central and Upper Midwestern parts of the United States, the correlation coefficients were less than 0.25. Regardless of the strength of the association between hydrogen and sulphate ions, all but one of the NADP/NTN sites used in our analysis exhibited at least 30% of the anions (sulphate, nitrate, and chloride) associated with cations other than hydrogen. For sites where the strength of the association was weak, between 65% and 98% of the anions appeared to be associated with cations other than hydrogen. Because a large percentage of the anions (i.e. sulphate, nitrate, and chloride) appear to be associated with cations other than hydrogen even at those sites where the association between hydrogen and sulphate ions was strong, the complex chemistry controlling the acidity in precipitation may make it difficult to predict the impact of a reduction in sulphate concentration.  相似文献   

11.
Major and trace elements in precipitation on Western Switzerland   总被引:1,自引:0,他引:1  
Rain and snow samples from different sites, varying in altitude, in western Switzerland were taken from January 1990 to November 1991. The samples were collected with ultraclean material and analysed for the major elements Na, Cl, NO3, SO4, K, Si, Ca, Mg and the trace elements B, V, Cr, Mn, Ni, Fe, Zn, Cu, Pb, Rb, Sr, and Ba content. A comparison with published data shows that the measured concentration and fluxes are typical for slightly contaminated rural European regions. Analysis of variance suggests that the region is fairly homogeneous for atmospheric deposition although the sites differ in altitude and human influence. Enrichment factors indicate that most of the elements are originating from seawater or continental crust and that the elements released by human activities are submitted to long-range transport. Temporal evolution in concentrations and differences between rain and snow composition could originate from the general atmospheric circulation.  相似文献   

12.
Daily-event precipitation samples collected in Underhill, VT from 1995 to 2006 were analyzed for total mercury and results suggest that there were no statistically significant changes in annual mercury wet deposition over time, despite significant emissions reductions in the Northeast United States. Meteorological analysis indicates that mercury deposition has not decreased as transport of emissions from major source regions in the Midwest and East Coast have consistently contributed to the largest observed mercury wet deposition amounts over the period. In contrast, annual volume-weighted mean (VWM) mercury concentration declined slightly over the 12-years, and a significant decrease was observed from CY 2001 to 2006. An increase in the total annual precipitation amount corresponded with the decline in annual VWM mercury concentration. Analysis suggests that the increase in precipitation observed was strongly related to changes in the amount and type of precipitation that fell seasonally, and this departure was attributed to a response in meteorological conditions to climate variability and the El Niño-Southern Oscillation (ENSO) cycle. Increased amounts of rainfall and mixed precipitation (mixture of rainfall and snowfall), particularly in the spring and fall seasons, enhanced annual precipitation amounts and resulted in declining VWM mercury concentrations during these periods. Thus, declines in concentration at the more remote Underhill site appear to be more directly linked to local scale meteorological and climatological variability than to a reduction in emissions of mercury to the atmosphere.  相似文献   

13.
Net primary production (NPP) of the forest moss Hylocomium splendens increased significantly along an elevational gradient in the southern Alps of Italy. Extracellularly bound metals (Al, Ca, Co, Cr, Fe, Ni, Mo, Ni, Pb) showed declining concentrations in moss tissue with increasing altitude, presumably because the amount of exchange sites on the cell wall increases less than total biomass. Concentrations of intracellular elements did not vary (Cd, Cu, Mg, Na, Zn), or even increased (K) with altitude. The observed patterns were always independent of precipitation amount and soil concentrations of exchangeable elements. A higher soil nutrient status only enhanced K uptake by the moss. We concluded that variations in moss NPP, associated with elevational gradients, may significantly affect estimates of atmospheric deposition based on moss analysis in mountainous regions.  相似文献   

14.
Pickering CM  Buckley RC 《Ambio》2010,39(5-6):430-438
Skier numbers, and revenues for the multi-billion-dollar ski industry, are highly sensitive to snow cover. Previous research projected that under climate change, natural snow cover will become inadequate at 65% of sites in the Australian ski resorts by 2020. Resorts plan to compensate for reduced snowfall through additional snowmaking. For the six main resorts, however, this would require over 700 additional snow guns by 2020, requiring approximately US $100 million in capital investment, and 2,500-3,300 ML of water per month, as well as increased energy consumption. This is not practically feasible, especially as less water will be available. Therefore, low altitude ski resorts such as these may not be able to rely on snowmaking even for short-term adaptation to climate change. Instead, they are likely to seek conversion to summer activities and increased property development.  相似文献   

15.
In this study, we measured the wet deposition fluxes of ten trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V and Zn) from December 2002 to March 2006 at three sites along the Japan Sea coast, which have been strongly affected by the long-range transport of air pollutants from the Asian continent. Also, factors, contributing to their seasonal variations were investigated. At the northern and central sites, the monthly wet deposition fluxes of all or most trace elements greatly increased during the cold season (typically, November–April), along with their monthly average (volume-weighted) concentrations in the precipitation. The cold/warm season ratios for the average concentrations of trace elements in precipitation were within the range of 2.7–5.1 at the northern site and 1.8–5.9 at the central site, which were similar to the average scavenging ratios (= concentration in precipitation/concentration in air) at each site. However, there were small differences (0.47–1.2 at the northern site and 0.73–1.7 at the central site) in the ratios of average concentrations in air between the two seasons. These suggest that the increase in the wet deposition fluxes of trace elements during the cold season is due to increases in their scavenging ratios. On the other hand, the result for the southern site was different from those at the other sites. The number of days when the daily maximum wind speed exceeded 10 m s?1 at the meteorological observatories near the study sites increased markedly during the cold season at the northern and central sites, showing that strong winds usually blow during the cold season at those sites, but not at the southern site. Higher wind speed transports larger amounts of constituents into the cloud system, which can result in their increased concentrations in precipitation. Thus, high scavenging ratios of trace elements during the cold season may be caused by the increase in their amounts of discharge into the cloud system owing to high wind speed, suggesting that wind speed is an important factor in the seasonal variations in the wet deposition fluxes.  相似文献   

16.
Winter rains have lower NO3 levels but higher SO2−4 levels than snows in the NE United States. In this study, four years of winter precipitation data from SE Michigan were examined to help understand these differences. Although NO3 levels were indeed higher in snow than winter rain, the higher concentrations could be attributed to the generally lower precipitation depths associated with snow events than with rain events. The NO3 concentrations are inversely correlated with precipitation depth. There was no evidence that snow scavenged HNO3 in the air more efficiently than rain.Conversely, SO2−4 was far higher in winter rain than in snow. This could not be explained in terms of ground-level ambient S concentrations or the wind direction from which the storm originated. However, the cloud temperatures were high enough in the case of rain to suggest that the cloud hydrometeors could have been present as liquid droplets rather than ice crystals. The SO2−4 concentrations of the precipitation were highly correlated with the temperatures of the cloud layers. The data suggest that SO2 is incorporated and oxidized to SO2−4 in clouds most efficiently when the hydrometeors are present as liquid droplets. The fact that NO3does not show the same relationship suggests that incorporation of N species into cloud water followed by oxidation is not as important a process for N as for S.  相似文献   

17.
A two dimensional model of the seeder-feeder mechanism of orographic rainfall enhancement has been developed. The model has been extended to include the deposition of aerosol material incorporated into the orographic feeder cloud by nucleation scavenging. Parameterizations of any changes in the concentration of SO42− in the cloud due to chemical reactions have also been included. The model is used to predict the rainfall enhancement and SO42− deposition over terrain consisting of two parallel ridges oriented perpendicular to the wind. A wide range of spatial scales has been used of up to 150 km. It is found that the patterns of rainfall enhancement and deposition are strongly dependent on the spatial scales, the atmospheric structure and the cloud chemistry.  相似文献   

18.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

19.
Manganese and other trace elements in urban snow near an expressway   总被引:1,自引:0,他引:1  
The Mn contamination arising from the combustion of MMT (methylcyclopentadienyl manganese tricarbonyl) in unleaded gasoline was assessed using snow collected at different distances 15, 25, 125 and 150 m from an expressway (Montreal, Canada) in February 1993. The snow samples were analyzed by atomic absorption and by neutron activation for total Mn, Mg, Cu, V, Al, Zn, Fe, Na, and Ca concentrations in the soluble (<0.4 microm) and particulate fractions. ANOVA with ranked values was performed to compare element concentrations and soluble/particulate ratios among receptor sites and depths. Principal component analysis was used to describe the spatiotemporal variations of the deposition rates and the influence of meteorological factors. The average concentration of all trace elements, except Mg, Cu, and V, decreased significantly (p<0.05) from receptor sites near the road (15-25 m) to those farther away (125-150 m). The deposition rates of all metals and ions, except Cu, were highly positively correlated (tau = 0.5-0.9) with each other and inversely correlated with snowfalls. Wind frequency showed no correlation with deposition rate. The spatial trend was similar for all these elements making it difficult to distinguish Mn arising from the combustion of MMT from that due to other sources, such as road dust. Only the soluble/particulate ratio calculated for Mn seemed higher than that for the other metals, which might be explained by the particle size of Mn from MMT (0.2-0.4 microm). The present study only indicates a direct contamination of the snow by road activities and substantial deposition of trace elements near the roadway; no clear link can be established between motor vehicle emissions and the concentration of Mn in snow.  相似文献   

20.
From the examination of the spatial distribution of pollutants and of the record from ice cores, it is demonstrated that Svalbard is strongly affected by anthropogenic pollution. This pollution has caused an increase of approximately 90% in the acidity of the snow deposited in the Archipelago since the beginning of the Industrial Revolution. High concentrations of H+, frequently greater than 10 μeq l−1 (i.e. with pHs lower than 5.0), associated with high concentrations of sulphates, indicate that Svalbard is experiencing the phenomenon of acid deposition. The first part of this work reviews the existing knowledge of atmospheric, snow, and ice pollution in Svalbard. This is followed by an examination of the acidity time series, supported by excess-sulphate measurements, performed on an ice core from central-eastern Spitsbergen that provide a historical record of acid deposition over a 54 year period. An ice core recovered from Austfonna, Nordaustlandet provided baseline values and also a record of acidity in precipitation before and during the entire industrial period, thereby allowing the evolution of acid deposition in the Archipelago to be traced. The records of these two Svalbard cores also reflect the overall regional trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号