首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Wang H  Wu Z  Zhao W  Guan B 《Chemosphere》2007,66(1):185-190
TiO2 loading on woven glass fabric is applied to treat nitrogen oxides (NOx) by photocatalytic oxidation (PCO). In this paper, the PCO behavior of NO at high concentrations was studied by PCO of NOx at source levels (20-168 ppm). The PCO efficiency reached 27% in this experiment, while the inlet NOx concentration was 168 ppm (147 ppm NO). The dependency of the reaction rate on several key influencing factors (relative humidity, space time, inlet concentration, oxygen percentage) was also studied. The results illustrate that the resulting hydroxyl radical and active oxide play an important role in the oxidation of NOx. The reactions are limited by the thermodynamic equilibrium after ca. 15s space time. A possible explanation for the catalyst deactivation is the accumulation of nitric acid and nitrous acid on the TiO2 surface during the PCO of NOx. However, the photocatalytic activity can be recovered with a simple heat treatment. The results from the study of the effect of the inlet concentration were described with the Langmuir-Hinshelwood model.  相似文献   

2.
着重研究了不同紫外灯光源和照射时间条件下,TiO2光催化(PCO)对微滤去除腐殖酸过程中的膜污染控制,并探讨了膜污染的控制机理。研究结果表明,TiO2光催化能有效提高微滤对腐殖酸的去除,同时降低膜通量的下降,起到有效控制膜污染的作用。进一步的实验分析表明,TiO2光催化控制膜污染的主要机理在于将腐殖酸降解为易于被TiO2吸附的小分子量物质,吸附腐殖酸降解产物后的TiO2聚合颗粒粒径增大,易于在膜表面形成更为松散的沉积层,并使膜污染从以膜孔堵塞和沉积层污染为主转化为以沉积层污染为主的可逆性污染。  相似文献   

3.
SO2的气相光催化氧化及催化剂的失活和再生研究   总被引:3,自引:0,他引:3  
在模拟大气环境中,紫外光照射以及纳米TiO2光催化剂的作用下,气相无机污染物SO2被完全氧化为SO3或H2SO4。本文提出了SO2的非均相光催化氧化机理,并得出光催化反应速率符合一级动力学过程;经过连续使用之后,TiO2的光催化活性降低,最后活性消失;经过水洗之后,失活的TiO2可以得到再生。失活的TiO2和新鲜的TiO2的IR和XPS光谱差异表明,失活的TiO2表面存在H2SO4,其被认为是使催化剂失活的成分。  相似文献   

4.
Jo WK  Park KH 《Chemosphere》2004,57(7):555-565
The current study evaluated the technical feasibility of applying TiO2 photocatalysis to the removal of low-ppb concentrations of volatile organic compounds (VOCs) commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) for VOCs, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) in relation to the PCO destruction efficiencies of the selected target VOCs. None of the target VOCs exhibited any significant dependence on the RH, which is inconsistent with a previous study where, under conditions of low humidity and a ppm toluene inlet level, a drop in the PCO efficiency was reported with a decreasing humidity. However, the other four parameters (HD, RM, FT, and IPS) were found to be important for better VOC removal efficiencies as regards the application of TiO2 photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VOCs at concentrations associated with non-occupational indoor air quality issues was up to nearly 100%, and the CO generated during PCO was a negligible addition to indoor CO levels. Accordingly, a PCO reactor would appear to be an important tool in the effort to improve non-occupational indoor air quality.  相似文献   

5.
Method for predicting photocatalytic oxidation rates of organic compounds   总被引:1,自引:0,他引:1  
In designing a photocatalytic oxidation (PCO) system for a given air pollution source, destruction rates for volatile organic compounds (VOCs) are required. The objective of this research was to develop a systematic method of predicting PCO rate constants by correlating rate constants with physical-chemical characteristics of compounds. Accordingly, reaction rate constants were determined for destruction of volatile organics over a titanium dioxide (TiO2) catalyst in a continuous mixed-batch reactor. It was found that PCO rate constants for alkanes and alkenes vary linearly with gas-phase ionization potential (IP) and with gas-phase hydroxyl radical reaction rate constant. The correlations allow rates of destruction of compounds not tested in this research to be predicted based on physical-chemical characteristics.  相似文献   

6.
Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation   总被引:21,自引:0,他引:21  
So CM  Cheng MY  Yu JC  Wong PK 《Chemosphere》2002,46(6):905-912
The photocatalytic oxidation (PCO) of a monoazo dye Procion Red MX-5B under various physico-chemical conditions was investigated. Degradation of the dye by PCO was enhanced by augmentation in UV intensity, titanium dioxide and hydrogen peroxide concentrations but was inhibited by increase in initial dye concentration. The PCO process was affected by pH in a peculiar way. In the presence of 100 mg/l of TiO2 and the absence of H2O2, the highest reaction rate was observed when the initial pH was 10. With 500 mg/l of TiO2 and 10 mM of H2O2, the reaction was the fastest at initial pH of 3-5. The optimal conditions for the degradation of the dye, at an UV intensity of 17 mW/cm2, were determined to be: TiO2 concentration, 500 mg/l; initial H2O2 concentration, 10 mM; initial pH, 5.0. Monitoring of TOC loss showed that the dye was mineralized by 90% within 80 min under these conditions. Nevertheless, the persistence of a low level of TOC indicated that mineralization was not complete and dead-end product(s) which was (were) resistant to PCO might have accumulated.  相似文献   

7.
Li Y  Xie Y  Peng S  Lu G  Li S 《Chemosphere》2006,63(8):1312-1318
In the presence of chloroacetic acids, the photocatalytic hydrogen evolution and decomposition of the pollutants over Pt/TiO2 have been investigated. The Pt/TiO2 was prepared by photodeposition. Monochloroacetic acid and dichloroacetic acid enhance photocatalytic hydrogen generation, whereas trichloroacetic acid does not. The photocatalytic oxidation of monochloroacetic acid and dichloroacetic acid mainly produces CO2, HCl and formaldehyde, whereas the photocatalytic oxidation of trichloroacetic acid mainly produces CO2 and HCl. The effect of the concentration of monochloroacetic acid and dichloroacetic acid on the hydrogen generation rate is consistent with a Langmuir-Hinshelwood kinetic model. A possible reaction mechanism was discussed.  相似文献   

8.
Zhihui A  Peng Y  Xiaohua L 《Chemosphere》2005,60(6):824-827
In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed.  相似文献   

9.
Horikoshi S  Hidaka H 《Chemosphere》2003,51(2):139-142
Strong oxidation by titanium dioxide photocatalysis can occur by photodegradation of organic contaminants in air and water. Some endocrine disruptors such as 2,4-dichlorophenoxy acetic acid (;;; ), 2,4-dichlorophenol (;;; ), nonylphenol (; ), bisphenol A (), diethyl phthalate (; ), etc. which can be neither biodegraded by bacteria nor degraded thermally can be degraded by TiO(2) photocatalytic treatment. However, incomplete photomineralization partly occurred, when TiO(2) photocatalytic degradation is employed for the treatment of certain endocrine disruptors. For example, no atrazine pesticide having triazine skeleton can be completely mineralized even by a photocatalytic procedure; the photodegradation of atrazine ultimately stops at the intermediate step of cyanuric acid, which cannot be photodegraded even after long illumination times ().In this study, the decomposition of atrazine and cyanuric acid was carried out with a device combining photocatalytic degradation in supercritical water (scH(2)O) or hydrothermal water (hyH(2)O). Atrazine and cyanuric acid can be degraded by the cooperation of either scH(2)O or hyH(2)O and UV illuminated TiO(2)-photocatalytic dispersed system under the fixed pressure of 23 MPa at 623 K or 683 K in a 120-ml Hastelloy batch reactor. The photocatalytic degradation method under high temperature and pressure has found appropriate for the photocatalytic oxidation of acetic acid and 2-chlorobiphenyl under continuous flow conditions at 160 degrees C and 20 atm (). In addition, the wet peroxide oxidation of PCBs by high temperature and pressure has been reported (). The main aims of this research are following. (i): the degradation of atrazine and cyanuric acid within the scH(2)O or hyH(2)O, (ii) the decomposition of atrazine and cyanuric acid catalyzed by TiO(2) particles under scH(2)O or hyH(2)O, and the synergistic effect for several reactions with TiO(2) and scH(2)O or hyH(2)O, and (iii) the mineralization yield of nitrogen and chlorine atoms concerning the chemical structures of atrazine or cyanuric acid (only nitrogen).  相似文献   

10.
We have studied deactivation of titanium dioxide (TiO2) photocatalyst by oxidation of polydimethylsiloxane and silicone sealant off-gas in a recirculating batch reactor. Polydimethylsiloxane vapor is a model indoor air pollutant. It does not adsorb strongly on TiO2 in the dark, but undergoes oxidation when the ultraviolet (UV) photons are also present. Commercial silicone (room-temperature vulcanizing) sealant off-gas is an actual indoor air pollutant subject to short-term spikes in concentration. It does adsorb on the TiO2 surface in the dark, but UV photons also catalyze its oxidation. The oxidation of the Si-containing vapors was monitored using a Fourier transform infrared spectroscope equipped with a gas cell. Subsequent to each incremental exposure, a hexane oxidation reaction was performed to track the titania catalyst's activity. The exposures were repeated until substantial deactivation was achieved. We have also documented the regenerative effect of washing the catalyst surface with water. Surface science techniques were used to view the topography of the catalyst and to identify the elements causing the deactivation. Procedural observations of interest in the context of our recirculating batch reactor include the following: the rate of oxidation of hexane was used to assess the activity of a photocatalyst sample; hexane is an appropriate choice of a probe molecule because it does not adsorb in the dark and it undergoes photocatalytic oxidation (PCO) completely, forming CO2; and hexane does not deactivate the photocatalyst surface.  相似文献   

11.
Liu G  Zhang X  Xu Y  Niu X  Zheng L  Ding X 《Chemosphere》2005,59(9):1367-1371
The photocatalytic oxidation of the organic pollutants with TiO(2) as photocatalyst has been widely studied in the world, and many achievements have been made. The degradation of pollutants is highly related to the photocatalytic activity of TiO(2). It is demonstrated that doping ions to TiO(2) is one way to enhance the photocatalytic activity of TiO(2). In this paper, Zn(2+)-doped TiO(2) nanoparticles were prepared through sol-gel and solid phase reaction methods, characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by sol-gel method is close to that of pure TiO(2) particles, however, the photocatalytic activity of Zn(2+)-doped TiO(2) prepared by solid phase reaction method is much higher than that of pure TiO(2) particles. The most efficient degradation of Rhodamine B was found with TiO(2) particles doped with 0.5% Zn(2+) in mole and calcined at 500 degrees C. Also the reason for the enhancement of the photocatalytic activity of TiO(2) by Zn(2+) doping through solid phase reaction method was discussed.  相似文献   

12.
A novel photocatalytic oxidation reactor, using Degussa P-25 TiO2 as a stationary phase with a thickness of 1.5-2.0 um on the blades of agitator, was developed to study the photocatalytic oxidation of xenobiotics. Particularly in this device, separation of photocatalyst from the purified water after oxidation reaction was not necessary, and no other aeration equipment was required to supply oxygen. To examine the efficiency of this device, photocatalytic degradation of xenobiotic organics such as carbofuran was studied as an example. Results indicated that carbofuran could be degraded completely with mineralization efficiency of 20% after 6 hours of oxidation under the imposed conditions. The mineralization rate of carbofuran was found to follow the pseudo-first order reaction kinetics. Moreover, the rate constant of mineralization was found to be proportional to TiO2 film area and the square root of UV light intensity. These results implied the mineralization efficiency of carbofuran could be improved through increasing TiO2 film area and UV light intensity. Accordingly, this novel device showed potential application for degrading xenobiotics in water.  相似文献   

13.
纳米TiO2光催化氧化去除水中痕量双氯芬酸的研究   总被引:1,自引:0,他引:1  
以TiCl4为前驱体,采用水解法经不同温度煅烧制备了具有不同理化性能的纳米TiO2光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、物理吸附仪、紫外—可见光漫反射吸收光谱(UV-Vis DRS)等手段对纳米TiO2的晶相结构、粒径、孔径分布以及禁带宽度等进行了表征。以蒸馏水配制的双氯芬酸溶液为目标物,进行了纳米TiO2光催化氧化去除双氯芬酸的活性测试,研究了纳米TiO2的理化性能与光催化氧化活性之间的关系。结果表明,经400℃煅烧制得的纳米TiO2样品具有最高的光催化氧化活性,其在紫外光照射60min下对双氯芬酸的去除率为98%左右,比单独紫外光照射高出85百分点。纳米TiO2光催化氧化去除双氯芬酸的反应近似一级反应动力学模型,其中经400℃煅烧制得的纳米TiO2光催化氧化去除双氯芬酸的表观反应速率常数为0.054 54min-1,是普通商用TiO2的2倍左右,与德国Degussa P-25TiO2的光催化氧化活性最相近。  相似文献   

14.
Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst   总被引:1,自引:0,他引:1  
Ma YS  Chang CN  Chiang YP  Sung HF  Chao AC 《Chemosphere》2008,71(5):998-1004
Photocatalytic degradation of lignin was studied with the use of catalysts TiO(2) and Pt/TiO(2). The influence of several experimental parameters, i.e. pH, catalyst dosage and illumination on lignin degradation was investigated. The results showed that application of UV irradiation alone has almost no effect on the reduction of dissolved organic carbon (DOC) and American Dye Manufacture Institute value (ADMI). However, the addition of TiO(2) and Pt/TiO(2) reduced the original DOC (251 mg l(-1)) by more than 40% within 30 min of treatment and the reaction can be simulated with pseudo-first order kinetics. Rapid degradation of lignin was observed in acidic solution using either TiO(2) or Pt/TiO(2) as the catalyst compared to high pH cases. The content of Pt in the Pt/TiO(2) catalyst is 1%. In addition, too much catalyst addition has not increased the DOC and ADMI reduction proportionally. The investigation also indicated that the photocatalytic degradation rates could be enhanced 1-6 times faster after doping TiO(2) with Pt in different pH cases. A modified Nernst type model was adopted to simulate the decoloring process using TiO(2) and Pt/TiO(2) based on the profiles of oxidation reduction potential during the photocatalytic reaction. The developed equation can be used to predict the color removal efficiency of lignin wastewater by the photocatalytic process.  相似文献   

15.
Li XZ  Fan CM  Sun YP 《Chemosphere》2002,48(4):453-460
This study aimed at improving the photocatalytic (PC) oxidation of humic acids (HA) in TiO2 suspensions by adding cationic ion such as calcium or magnesium. A set of tests was first conducted in the dark to study the adsorption of HA onto TiO2 in suspensions at different pH and calcium concentrations. The experiment demonstrated that the adsorption of HA onto the TiO2 particles was either pH-dependent or calcium strength-dependent due to electrostatic interaction and calcium ion bridging. The photodegradation of HA in the presence of UV irradiation was investigated as a function of pH and the concentration of calcium and magnesium ions. The results showed that the adsorption behavior between HA and TiO2 played a very important role during the PC oxidation process. The PC oxidation could be enhanced at neutral pH by increasing the cation strength. The kinetics of HA PC degradation in TiO2 suspensions with different initial concentrations was also studied using the Langmuir-Hinshelwood model.  相似文献   

16.
Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2   总被引:9,自引:0,他引:9  
Liu GG  Zhang XZ  Xu YJ  Niu XS  Zheng LQ  Ding XJ 《Chemosphere》2004,55(9):1287-1291
The photocatalytic oxidation of the organic pollutants with the TiO2 as photocatalyst has been widely studied in the world, and many achievements have been got. The degradation of pollutants is highly related with the photocatalytic activity of TiO2. It is demonstrated that doping ions or oxides to TiO2 is one way to enhance the photocatalytic activity of TiO2. In this paper, the ZnFe2O4-doped TiO2 nanoparticles were prepared from butyl titanate by a sol-gel method and characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that when TiO2 was doped with ZnFe2O4, its particle size will decrease and its crystal structure will partly transform from anatase to rutile. The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that doping ZnFe2O4 to TiO2 will enhance the photocatalytic activity of TiO2 and that ZnFe2O4-doped TiO2 in the coexistence of anatase and rutile has higher efficiency for the degradation of Rhodamine B than that in the anatase phase alone. Also the different role of O2 in the direct photolysis and photocatalysis of Rhodamine B was discussed.  相似文献   

17.
The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir-Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm-1 and 0.984 ppm min-1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

18.
He C  Shu D  Xiong Y  Zhu X  Li X 《Chemosphere》2006,63(2):183-191
Two types of platinised TiO2 films, i.e., Pt-TiO2/ITO and Pt(TiO2)/ITO, were prepared by a procedure of dip-coating and subsequent photo-deposition, and photo-deposition and subsequent dip-coating, respectively. They were well characterized by DRS, XRD spectra, SEM microscopy and photoelectrochemical measurement. Their photocatalytic, dark catalytic and photoelectrocatalytic activities were investigated using formic acid as a model organic pollutants. Compared with pure TiO2/ITO film, the photocatalytic activity of the platinised TiO2 films were apparently improved. However, the improvement was considerably dependent on the preparation method of these films. Pt-TiO2/ITO not only possessed higher photocatalytic activity but also showed a dark catalytic activity towards HCOOH degradation. As a sequence, it was first emphasized that the dark catalytic effect of Pt-TiO2/ITO was partly responsible for degradation of formic acid in the photocatalytic oxidation process. Although the Pt(TiO2)/ITO film does not exhibit the dark catalytic activity, its photocatalytic degradation efficiencies towards HCOOH are higher than that of Pt-TiO2/ITO film. Therefore, in view of enhanced photocatalytic activity, the Pt(TiO2)/ITO was more favored than Pt-TiO2/ITO film.  相似文献   

19.
Yang JK  Lee SM 《Chemosphere》2006,63(10):1677-1684
The removal efficiencies of Cr(VI) and HA, using a TiO(2)-mediated photocatalytic process, were investigated with variations in the pH, TiO(2) dosage and Cr(VI)/HA ratio. During the photocatalytic reaction, the total removal of Cr(VI) occurred through adsorption onto TiO(2), as well as its reduction to Cr(III). However, oxidation and adsorption were identified as important removal processes for the treatment of HA. Due to the anionic type adsorption onto TiO(2) and its acid-catalyzed photocatalytic reduction, the removal of Cr(VI) decreased with increasing pH, while that of HA increased with increasing pH. The TiO(2) dosage was also an important parameter for the removal of Cr(VI). As the TiO(2) dosage was increased to 2.5 g l(-1), the removal of Cr(VI) was continuously enhanced, but decreased at dosages above 3 g l(-1) due to the increased blockage of the incident UV light used for the photocatalytic reaction. The removal of Cr(VI) was greatly enhanced when the system contained both HA and Cr(VI) compared to Cr(VI) alone. Also, the removal of HA was greatly enhanced when the system contained both HA and Cr(VI) compared to HA alone. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased; however, no further increase was observed above 20 mg l(-1) HA due to the increased absorption of the UV light. This result supports that the photocatalytic reaction, with illuminated TiO(2), could be applied to more effectively treat wastewater containing both Cr(VI) and HA than that containing a single species only.  相似文献   

20.
外负载Ce-TiO2/活性炭复合体对亚甲基蓝光催化   总被引:2,自引:2,他引:0  
用超临界流体沉积法处理过的活性炭(AC)为载体,钛酸丁酯为前驱物,硝酸铈为掺杂剂,乙醇为溶剂,制备了外负载TiO2-Ce/Csurf复合材料。在紫外灯照射下,以亚甲基蓝溶液为标准模拟降解物,研究了复合体不同热处理温度、不同浓度、不同亚甲基蓝浓度、不同铈掺杂量以及不同反应温度对光催化性能的影响。结果表明:外负载催化剂的催化性能要高于纯TiO2和体负载催化剂。铈离子掺杂能抑制TiO2晶粒生长,阻碍了TiO2由锐钛矿型向金红石型的转变。当铈离子掺杂量为1.5%,热处理温度为600℃,亚甲基蓝溶液初始浓度为5.5 mg/L,样品浓度为1.5 g/L时,光催化性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号