首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 52 毫秒
1.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

2.
上海中心城区冬季PM_(2.5)中有机碳和元素碳组成变化特征   总被引:5,自引:0,他引:5  
采样分析了上海中心城区冬季2009年1月-2月PM2.5中有机碳和元素碳组分,并对其污染和变化特征进行了分析。监测分析结果表明,中心城区范围内OC、EC质量浓度空间分布无明显差异;OC、EC是PM2.5的重要组成部分,其在PM2.5中的质量分数分别为8.88%、1.49%;ρ(OC)/ρ(EC)比值较高,为5.73,且存在一定程度的二次有机污染;OC质量浓度和EC质量浓度有着很好的相关性,二者一定程度上有着相同的源;春节前后,TC浓度变化(即OC+EC)呈现明显的假日效应,机动车排放是TC的重要来源之一。  相似文献   

3.
贵阳市秋、冬季PM_(2.5)中碳组分污染特征及来源分析   总被引:2,自引:0,他引:2  
王珍  郭军  陈卓 《地球与环境》2015,43(3):285-289
为研究贵阳市大气细粒子PM2.5中有机碳(OC)和元素碳(EC)的污染特征,于2013年10月14日至2013年12月25日,采集2个监测点位秋季和冬季的PM2.5样品,检测分析PM2.5中有机碳(OC)、元素碳(EC)的质量浓度。结果表明,秋季PM2.5中OC的平均浓度为14.9μg/m3,EC的平均浓度为2.31μg/m3;冬季PM2.5中OC的平均浓度为26.2μg/m3,EC的平均浓度为7.53μg/m3,呈冬季高、秋季低的季节变化特征。秋、冬季PM2.5中OC/EC的值均大于2,表明存在二次有机碳(SOC)的贡献;秋季SOC的值为6.89μg/m3,冬季SOC的值为8.29μg/m3。通过计算PM2.5中8个碳组分丰度,初步判断PM2.5中秋季碳的主要来源是汽车尾气、道路扬尘和生物质燃烧,冬季碳的主要来源是汽车尾气、燃煤尘和道路扬尘。  相似文献   

4.
自2012年10月13日-2014年9月11日在邯郸市采集PM2.5样品,并对气态污染物以及颗粒污染物(PM10和PM2.5)进行在线监测,将其中100个样品进行8种碳组分分析,初步探讨含碳气溶胶的特征及来源。结果发现:采样期间PM10和PM2.5的平均浓度分别274.4μg/m3和154.7μg/m3,超标率大于80%,其中2013年1月份PM10和PM2.5的最大值更分别达到924.6μg/m3和658.2μg/m3。OC/PM2.5和EC/PM2.5的比例分别为16.7%和7.0%,采暖时间段的OC及EC的污染程度相较于非采暖时间段更为严重。OC和EC的平均增长率分别为2.67和1.33,污染累积和二次转化贡献率分别占49.8%和50.2%;SOC/OC在49.3%~57.7%之间,SOC/PM2.5在7.9%~11.6%之间,二次有机物污染较为严重。因子分析表明,冬季PM2.5碳组分主要来自于燃煤和柴油车尾气排放,生物质燃烧和汽油车尾气,分别解释了PM2.5中碳组分的39.3%、28.4%以及16.3%。  相似文献   

5.
为了了解北京城区大气细颗粒物(PM2.5)中有机碳(OC)和元素碳(EC)的浓度水平与季节变化特征,2013年5月、8月、10月和2014年1月分季节在北京城区进行了PM2.5和PM2.5中OC、EC的连续监测。在监测期间,PM2.5质量浓度平均值为86.8μg/m3,PM2.5中OC的平均浓度为15.46μg/m3,占PM2.5的17.8%;EC的平均浓度为2.88μg/m3,占PM2.5的3.3%。北京城区的PM2.5和OC、EC随季节变化明显,冬季最高,秋季大于春季,夏季最低。其中秋、冬季的OC、EC浓度的日变化有着明显的白天低、傍晚前后逐渐升高、在午夜出现峰值的特点。通过一次重污染过程分析发现,静稳、高湿的气象条件使PM2.5、OC、EC的浓度都有着显著地增加。对OC、EC相关分析显示,冬季两者的相关性最高。而且OC/EC的比值都大于2.0,说明北京存在着一定的二次污染。  相似文献   

6.
天津秋冬季PM2.5碳组分化学特征与来源分析   总被引:11,自引:2,他引:11       下载免费PDF全文
霍静  李彭辉  韩斌  陆炳  丁潇  白志鹏  王斌 《中国环境科学》2011,31(12):1937-1942
为研究天津大气PM2.5中有机碳和元素碳的特征,于2009年9月4日到2010年2月25日在天津3个监测点位采集PM2.5样品,分析了PM2.5颗粒中元素碳和有机碳的含量特征、与气象条件的相互关系、以及碳组分的来源.结果表明3个监测点位PM2.5的平均质量浓度为123.85μg/m3;TC的平均浓度为18.76μg/m3,其中OC的平均浓度为14.48μg/m3,EC的平均浓度为4.27μg/m3,日均OC和EC浓度分别占PM2.5的11.7%和3.5%.秋季SOC的估算值为5.1μg/m3, 占OC的40.7%、PM2.5的4.3%;冬季SOC的估算值为6.5μg/m3, 占OC的35.7%,PM2.5的4.9%.观测期间EC与温度呈比较好的负相关关系; OC、EC、TC的浓度与风速有较好的负相关性.48h后推气流轨迹结果显示局地盘旋的气流(L)和来自天津北方或西北方区域气流(N/NW)有较高的碳组分浓度;天津大气PM2.5中碳组分受包括生物质燃烧、汽车排放、燃煤和道路扬尘混合来源影响.  相似文献   

7.
万州城区夏季、冬季PM_(2.5)中有机碳和元素碳的浓度特征   总被引:3,自引:2,他引:3  
在位于三峡库区腹心的山地城市万州城区采集夏季和冬季PM2.5样品,采用热光反射法(Thermal Optical Reflection,TOR)测定了PM2.5中有机碳(OC)和元素碳(EC)的浓度,探讨了其污染特征及来源.结果发现,OC和EC在夏季的平均浓度分别为(7.09±1.86)μg·m-3和(3.49±0.64)μg·m-3;冬季分别为(16.82±6.87)μg·m-3和(6.21±2.06)μg·m-3,高于夏季,这可能与冬季当地居民生物质燃烧的贡献显著增加有关.冬季OC和EC显著线性相关(r=0.89),表明冬季两者的一次污染来源相近.冬季PM2.5中总碳(TC)和水溶性K+含量的相关性(r=0.88)高于夏季(r=0.69),表明冬季生物质燃烧对碳污染贡献显著.利用OC/EC比值法对二次有机碳(SOC)进行估算,SOC的浓度均值在夏季为(2.17±1.46)μg·m-3,占OC比例为28.18%±13.85%;冬季为(4.46±3.69)μg·m-3,占OC的23.13%±12.30%.通过计算PM2.5中8个碳组分丰度,初步判断机动车尾气排放和生物质燃烧是万州城区碳组分的主要来源.  相似文献   

8.
2009年7月和2010年1月在上海市华东理工大学采样点采集PM2.5样品,应用热/光碳分析仪对样品中的有机碳(OC)和元素碳(EC)进行了测定,并计算得到了二次有机碳(SOC)、char-EC和soot-EC的质量浓度。结果显示:采样期间PM2.5、OC、EC、SOC、char-EC、soot-EC夏季平均浓度分别为(58.87±20.04)、(11.37±4.12)、(3.68±1.27)、(4.37±2.86)、(3.00±1.24)和(0.68±0.30)μg/m3;冬季平均浓度分别为(142.31±45.47)、(16.01±4.43)、(5.53±2.36)、(5.67±2.92)、(5.11±2.35)和(0.42±0.17)μg/m3,除soot-EC外,均呈现夏季低、冬季高的特点。在不同空气质量下,OC、EC和char-EC的质量浓度具有明显差异,且三者均与能见度、平均风速呈显著负相关。夏冬两季soot-EC、char-EC、SOC和POC占TC的百分含量相差不大,其中POC/TC值最高,soot-EC/TC值最低。夏季SOC/TC的比值高于冬季,可能由于气温高有利于发生光化学反应。对8个碳组分进行主成分分析,结果显示,燃煤、生物质燃烧、汽油和柴油车排放对PM2.5中碳组分的贡献显著,并且可能受燃煤和汽油车排放的影响最大。  相似文献   

9.
2012年9月1日至30日利用大气气溶胶OC/EC在线分析仪在线分析了西安PM2.5中的OC、EC,并结合O3和紫外辐射数据(UV)进行了分析。结果表明:PM2.5、OC、EC、及O3的日均值分别为85.22,19.50,7.18,56.69μg/m3。PM2.5及其中OC、EC的日变化规律呈现"双峰"分布,OC、EC的日波动范围较PM2.5小,且OC的波动范围较EC大,OC、EC的相关性较高(R2=0.73)。PM2.5中TCA的平均比重为47.85%,是PM2.5的主要成分之一,TCA以OM为主,OM中SOC的平均比重高达54.76%,PM2.5中SOC的平均比重为21.25%,SOC和O3的相关性较高,表明研究期间西安市有机物光化学反应较重。1 d中10:00至19:00是PM2.5中SOC比重最高的时段且呈上升趋势,而PM2.5中TCA的变化规律则呈"W"型双峰分布。  相似文献   

10.
2013年10月至2014年7月,在太原市区,分4个月采集大气细颗粒物,共采集120个PM_(2.5)样品,分析了颗粒物及其有机碳(OC)和元素碳(EC)浓度。结果表明,采样期间大气中PM_(2.5)的日均浓度为(300±132)μg/m3,PM_(2.5)超国家二级标准较严重,大致呈现春季冬季秋季夏季的季节变化特征。大气PM_(2.5)样品中OC和EC的含量变化范围分别为3.6~137和0.8~19.3 g/m3,季节变化与颗粒物浓度不一致,呈现为冬季秋季春季夏季的季节变化特征。利用核磁共振仪分析了典型样品中碳质组分的结构组成。结果显示,烷基碳、烷基取代芳香烃碳和氧取代的芳烃或者酚醛树脂类碳是气溶胶中有机质的主要组成成分;秋冬季样品中,羧基碳和氧取代碳相对含量较高,主要来源于生物质燃烧;春季羟基类化合物增加显著,主要来源于地表土壤中的糖类;夏季样品中,来源于生物排放的烃类化合物和机动车排放的芳香烃相对含量较高。  相似文献   

11.
于2012年5月11日至5月15日同时对成都中心城区及其大气环境监测对照点都江堰灵岩寺大气PM2.5进行采集,并分析其中的化学组分。研究结果表明:成都市中心城区PM2.5的总体质量浓度大于灵岩寺,且各化学组分的质量浓度也均大于灵岩寺。两站点PM2.5中OC/EC均大于2,有2次有机碳的存在;中心城区WSOC和TN日均浓度大于灵岩寺,同时发现中心城区TN日变化趋势与灵岩寺一致,WSOC变化不明显;水溶性二次离子(SO2-4、NO-3和NH+4)浓度相对较高,中心城区SO2-4/NO-3值比灵岩寺小,说明成都市机动车尾气是主要排放源。  相似文献   

12.
利用成都市三瓦窑、沙河铺国控环监站2015年9月—2016年8月逐时PM_(2.5)监测数据,结合同期双流国际机场公布的地面气象要素(风场、温度、湿度和压强)以及温江站风速探空资料,首先统计分析了成都市风场、温度和湿度的基本特征,然后计算了污染条件下PM_(2.5)干沉降速率,并建立了适用于不同季节的GIFM模型和多元回归预测模型。结果表明:基本气象要素场的配置以及特殊地形导致了成都市PM_(2.5)干沉降环境恶劣,同时四季差异较大;污染条件下PM_(2.5)干沉降速率约为0.02~0.1 cm/s,表现为冬季<秋季<年<春季<夏季,四季的主要影响因子也不同,秋冬为湿度和压强,春季为温度,夏季为风速,且湿沉降强度过大时,会出现PM_(2.5)干沉降速率的"虚高"现象;GIFM模型和多元回归模型均能很好地预测污染条件下的PM_(2.5)干沉降速率,其预测能力均是夏季最好,冬季最差,春秋次之,通过对比分析表明GIFM模型的预测能力在各季节均优于多元回归模型。  相似文献   

13.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

14.
对2014年12月—2015年2月邯郸市大气中PM_(1.0)、PM_(2.5)以及PM_(2.5)中的硝酸根(NO-3)、水溶性有机碳(WSOC)和硫酸根(SO2-4)进行在线监测。结果表明,PM_(1.0)中干性成分(PM_(1.0)_DRY)和包含水分的PM_(1.0)(PM_(1.0)_WET)分别占PM_(2.5)的74.0%和81.4%,PM_(1.0)为PM_(2.5)中的主要组成。利用锯齿型方法估算本地源和区域源对PM_(1.0)、PM_(1.0)~2.5、PM_(2.5)的贡献,得出区域源对PM_(1.0)的贡献为40.6%,明显高于对PM_(1.0)~2.5与PM_(2.5)贡献的32.3%和37.7%,因为PM_(1.0)直径小,在大气中存在时间较长、传输距离远。根据NO-3、WSOC、SO2-4与PM_(1.0)、PM_(1.0)~2.5的相关系数,推断NO-3、WSOC可能在PM_(1.0)生成,而SO2-4可能在PM_(1.0)~2.5中生成。  相似文献   

15.
武汉市与西安市颗粒物PM_(10)、PM_(2.5)的污染水平分析   总被引:1,自引:0,他引:1  
利用武汉、西安两市2013年PM10与PM2.5的监测数据,统计分析了武汉市和西安市PM10与PM2.5的污染水平,并比较了两城市的污染水平。根据GB 3095—2012《中华人民共和国环境空气质量标准》规定的二级浓度限值,可知武汉市和西安市PM2.5的污染都非常严重,PM10的污染相对较轻。从整体上说,西安市的污染水平要比武汉市严重,其中西安市PM10中PM2.5约占79%。武汉市和西安市的相关部门都应重视PM10和PM2.5的污染问题。  相似文献   

16.
根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。  相似文献   

17.
韦琳  刘阳生 《环境工程》2013,31(3):98-102
近期,细粒子PM2.5造成的严峻的大气环境污染问题引起了社会的广泛关注。而中国作为世界第一的水泥生产大国,排放了大量的粉尘和烟尘。综述了国内外有关水泥行业PM2.5的研究进展,总结了PM2.5的来源及危害、排放现状、采样方法及其控制技术,并对其研究动向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号