首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
汾河流域是山西省重要的水资源供给区,是促进山西省区域协调发展的重要区域,汾河流域高质量发展的关键在于汾河生态环境保护与社会经济协调发展。利用DPSIR-TOPSIS模型对汾河流域水资源承载力进行分析,结果表明,2012—2021年汾河流域的水资源承载力水平实现了阶段性增长,高质量经济发展水平和高水平水资源保护的协同推进促成了水资源承载力的整体平稳上升。基于层次分析法和空间分析法的生态敏感性分析结果表明,轻、中、高敏感区占汾河流域的79.51%,极敏感区占区域的14.45%,植被覆盖度是影响区域生态敏感性的重要考量。本研究对汾河流域水资源承载力和生态敏感性的时空变化进行了综合评估,为汾河流域高质量发展路径设计提供科学依据。  相似文献   

2.
研究提出了用磷酸钕(NdPO4)作为共沉淀捕集剂分离富集环境水样中的痕量Pb2 ,用火焰原子吸收光谱(FAAS)测定的方法.共沉淀受pH、NdCl3和H3PO4溶液用量的影响.结果显示,在溶液pH为3.2时,20 mL水样中加入5 mg/L NdCl3 2 mL、0.5 mol/L H3PO4 3 mL条件下,铅的加标回收率为96.6%~104.2%,方法的检测限为5.7×10-3 mg/L,水体中常见碱金属、碱土金属离子及阴离子在一定范围内不影响测定.  相似文献   

3.
钱塘江流域污染负荷及水环境容量研究   总被引:5,自引:1,他引:4  
采用排污系数法计算了钱塘江流域不同污染源COD和氨氮的污染负荷,研究了整个流域90%、75%和so%水文保证率下的水环境容量.以流域水质目标为出发点,考虑污染负荷和流域社会经济发展需求相协调的原则,确定了钱塘江流域水污染总量控制阶段性目标.  相似文献   

4.
张怡  刘本洪  刘蕾  杨春 《环境工程学报》2021,15(12):3875-3882
将富营养水体治理与硬质河岸改造相结合,能够提高水体与河岸的交互能力,恢复河流生态系统的自净能力.以位于四川省天府新区眉山片区中心城区的柴桑河河段(长度1.5km,宽度80~100m,水深约1.85m)为例,通过铺设护岸专用基料、设置滴灌系统和播撒花草种子对硬质河岸进行生态重建,通过向水体中施用除磷剂、微生物菌剂及采用生态浮床、水车增氧等措施,降低了水体中的氮磷含量,利用太阳能为整个处理系统供能,实现了硬质河岸和富营养水体的综合治理.项目实施后,通过半年的监测和观察,结果表明:柴桑河水体中总磷(TP)、氨氮(NH3-N)、高锰酸盐指数(CODMn)和总氮(TN)含量明显降低,TP和NH3-N由劣V类提升至地表水Ⅲ类,CODMn由劣V类提升至地表水Ⅳ类,TN由劣V类提升至地表水V类;河道内鱼类、藻类、水草的多样性增加,硬质河岸完全被植被覆盖,植物种类达数十种,自然景观恢复,河流生态自净功能显著增强,有利于使水体保持健康稳定.  相似文献   

5.
淮河流域水环境保护政策评估   总被引:5,自引:1,他引:4  
搜集各部门已有数据对淮河流域水环境保护政策体系、管理行动、排放控制以及水质进行评估.结果表明,淮河流域水质没有明显改善和恶化的趋势,规划目标没有达到,污染物排放没有得到控制,工业和生活污染源是水质超标的首要原因,部门间水质和排放监测缺乏协调,数据质量低,水环境保护投入落后于社会经济发展.建议实施严格的排污许可证制度;尽快建立流域水环境保护信息共享平台;中央政府通过许可证、专项资金等形式承担更多的流域水环境保护责任;完善水环境保护规划体系,以较长的时间尺度,制定流域水环境保护的战略性基础规划.  相似文献   

6.
Environmental Science and Pollution Research - Uranium (U) is a highly toxic radioactive element and limited to < 30 μg/L in drinking water by the World Health Organization. In this...  相似文献   

7.
Arsenic and other trace element concentrations were determined for tube-well water collected in the Lao PDR provinces of Attapeu, Bolikhamxai, Champasak, Savannakhet, Saravane, and Vientiane. Water samples, especially from floodplain areas of central and southern Laos, were significantly contaminated not only with As, but with B, Ba, Mn, U, and Fe as well. Total As concentrations ranged from <0.5 μg L−1 to 278 μg L−1, with over half exceeding the WHO guideline of 10 μg L−1. 46% of samples, notably, were dominated by As(III). Samples from Vientiane, further north, were all acceptable except on pH, which was below drinking water limits. A principal component analysis found associations between general water characteristics, As, and other trace elements. Causes of elevated As concentrations in Lao tube wells were considered similar to those in other Mekong River countries, particularly Cambodia and Vietnam, where young alluvial aquifers give rise to reducing conditions.  相似文献   

8.
Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p?=?0.930, p?=?0.001) and BOD5 and COD (r p?=?0.839, p?=?0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.  相似文献   

9.
Metal (Pb, Cu and Zn) partitioning in six separated sediment size fractions (<8, 8-12, 12-19, 19-31, 31-42, 42-60 microm) of river bed sediment have been analyzed by sequential extraction. The concentrations of some major elements (Si, Al, Ca, Mg, K, Na, Fe, Mn and P), and organic and inorganic C were determined to correlate the elemental composition of the sediment with metal speciation and grain size. Results show that Zn and Pb concentrations increase with decreasing grain size. For Big Creek and Big Otter Creek, respectively, the highest concentrations of Zn (326 and 230 mg kg(-1)) and Pb (158 and 67 mg kg(-1)) were found in the smallest (<8 microm) fraction, whereas the Cu levels (619 and 1281 mg kg(-1)) were most abundant in the second smallest (8-12 microm) fraction. The major accumulative phases for Cu, Zn and Pb were carbonates, Fe/Mn oxides and organic matter, but the relative importance of each phase varied for individual metals and grain sizes. The extraction data show increasing potential bioavailability of metals with decreasing grain size. Estimates of metal yields in the study catchments suggest that over 80% of the metal yield in sediment smaller than 63 microm is associated with solids smaller than 31 microm.  相似文献   

10.
Nilsson S  Langaas S 《Ambio》2006,35(6):304-311
We address issues connected with international river basin management and the EU Water Framework Directive (WFD). By creating a register of River Basin Districts established under the WFD, we show that the number and area of international River Basin Districts are significant. Further, we present an assessment of international cooperation and water quality in 14 international river basins in the Baltic Sea Drainage Basin. Our results indicate that the WFD is a push forward for international river basin management in the region. However the WFD in general, and the principle of river basin management in particular, may be hard to implement in river basins shared between EU Member States and countries outside the EU. According to the study, Vistula, Pregola, and Nemunas appear to be the international basins within the Baltic Sea Drainage Basin in greatest need of intensified cooperation with regard to the state of the water quality.  相似文献   

11.
以常见的磷氮双成份磷酸二氢铵为改性剂,间苯二酚/甲醛和F127为碳源和模板剂,成功制备了对痕量铅具有高灵敏度的氮磷双改性介孔碳OMC-MAP改性玻碳电极。通过N2吸附脱附等温线、FT-IR、XPS和阳极溶出伏安法对OMC-MAP的物化性质及其改性玻碳电极电化学性能进行了表征和分析。结果表明:OMC-MAP具有较高的孔容(0.835 mL·g−1)、比表面积(579 m2·g−1)和丰富的氨基、羧基、羰基等氮氧官能团,以及P—C、P—O—C等含磷官能团,介孔主要分布在5~10 nm区域,峰值在7.45 nm;OMC-MAP良好的介孔结构及其分散在微介孔表面的氮、磷、氧活性官能团为其改性玻碳电极传感器提供了良好的电子传递通道和高识别铅离子的活性位点。在醋酸-醋酸钠支持电解质底液下,OMC-MAP介孔碳改性玻碳电极传感器对溶液铅显示极优的电催化还原活性,当pH=3.8、富集电位为−1.2 V和富集时间为240 s时,循环伏安溶出电流的响应值达到最大。在该条件下,OMC-MAP改性玻碳电极在1~10 000 µg·L−1宽范围内对铅离子均表现出极优的响应性,R2>0.98,灵敏度高、检测范围广,说明OMC-MAP是一种潜在痕量铅的电极材料。  相似文献   

12.
Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9–25 μg Cu/L and 177–1,556 μg Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 μg/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 μg/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed differences in toxicity between river water exposures and laboratory water exposures were not entirely due to differences in water quality and metal bioavailability but rather in combination with differences in fish sensitivity. It is hypothesized that differences in concentrations of calcium in the different water sources might have resulted in differences in acquired sensitivity of sturgeon to metals. Canadian water quality guidelines, US national criteria for the protection of aquatic life, and water quality criteria for the state of Washington were less than LC50 values for all metals and life stages tested in laboratory and Columbia River water. With the exception, however, that 40 dph white sturgeon exposed to Cu in laboratory water resulted in threshold values that bordered US national criteria and criteria for the state of Washington.  相似文献   

13.
14.
基于方波溶出伏安法运用丝网印刷电极探索了一种利用电化学传感器检测水样中痕量铅的方法.得到了该检测方法的最佳参数:方波频率30 Hz,振幅80 mV,电位增量5 mV;0.5 mol/L的支持电解质(KCl);沉积电位-1.1 V,沉积时间400 s.在该优化条件下,在浓度为25 ~ 500μg/L范围内溶出峰电流与铅离子浓度呈良好的线性关系(R2=0.9945).对于几种其他金属离子的干扰实验结果表明,Mn2的存在严重抑制铅离子的峰电流.  相似文献   

15.
Fenton氧化-混凝联合工艺处理络合铜镍废水的研究   总被引:2,自引:0,他引:2  
采用Fenton试剂氧化-混凝联合工艺对难处理络合铜镍电镀废水进行了研究,考察了废水初始pH值、H2O2初始浓度、[Fe^2+]/[H2O2]、反应时间和温度、混凝液pH、混凝剂质量浓度对处理过程的影响,探讨了废水的降解途径和机理.结果表明,在体系初始pH=4,温度30℃,H2O2投加量为800mg/L,[Fe^2+]/[H2O2]=0.1,反应时间60 min,混凝液pH=8及混凝剂质量浓度为500mg/L的条件下,废水的COD去除率为96.98%,Cu^2+为99.91%,Ni^2+为99.92%,处理水完全达到国家一级排放标准.同时依据GC/MS对X-GN降解最终产物的分析结果,推导出废水的基本降解机理和途径.  相似文献   

16.
Total lead (Pb) concentration and Pb isotopic ratio (206Pb/207Pb) were determined in 140 samples from the Seine River basin (France), covering a period of time from 1945 to 2011 and including bed sediments (bulk and size fractionated samples), suspended particulate matter (SPM), sediment cores, and combined sewer overflow (CSO) particulate matter to constrain the spatial and temporal variability of the lead sources at the scale of the contaminated Seine River basin. A focus on the Orge River subcatchment, which exhibits a contrasted land-use pattern, allows documenting the relation between hydrodynamics, urbanization, and contamination sources. The study reveals that the Pb contamination due to leaded gasoline that peaked in the 1980s has a very limited impact in the river nowadays. In the upstream Seine River, the isotopic ratio analysis suggests a pervasive contamination which origin (coal combustion and/or gasoline lead) should be clarified. The current SPM contamination trend follows the urbanization/industrialization spatial trend. Downstream of Paris, the lead from historical use originating from the Rio Tinto mine, Spain (206Pb/207Pb?=?1.1634?±?0.0001) is the major Pb source. The analysis of the bed sediments (bulk and grain size fractionated) highlights the diversity of the anthropogenic lead sources in relation with the diversity of the human activities that occurred in this basin over the years. The “urban” source, defined by waste waters including the CSO samples (206Pb/207Pb?=?1.157?±?0.003), results of a thorough mixing of leaded gasoline with “historical” lead over the years. Finally, a contamination mixing scheme related to hydrodynamics is proposed.  相似文献   

17.
采用Fenton试剂氧化-混凝联合工艺对难处理络合铜镍电镀废水进行了研究,考察了废水初始pH值、H2O2初始浓度、[Fe2 ]/[H2O2]、反应时间和温度、混凝液pH、混凝剂质量浓度对处理过程的影响,探讨了废水的降解途径和机理.结果表明,在体系初始pH=4,温度30℃,H2O2投加量为800mg/L,[Fe2 ]/[H2O2]=0.1,反应时间60 min,混凝液pH=8及混凝剂质量浓度为500mg/L的条件下,废水的COD去除率为96.98%,Cu2 为99.91%,Ni2 为99.92%,处理水完全达到国家一级排放标准.同时依据GC/MS对X-GN降解最终产物的分析结果,推导出废水的基本降解机理和途径.  相似文献   

18.
The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.  相似文献   

19.
In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years’ replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 +–N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p?<?0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle–downstream area of Yangtze River Base.  相似文献   

20.
Cheung KC  Poon BH  Lan CY  Wong MH 《Chemosphere》2003,52(9):1431-1440
The effects of anthropogenic activities, industrialization and urbanization on the accumulation of heavy metals and nutrients in sediments and water of rivers in the Pearl River Delta region were examined. Most sediments were seriously contaminated with Cd, Pb, and Zn in accordance with the classification by Hong Kong Environmental Protection Department. Total phosphorus (P) and nitrogen (N) concentrations in sediments ranged from 0.02% to 0.12% and 0.06% to 0.64%, respectively. High carbon (C), N, P and sulphur (S) levels at Yuen Long Creek were related to the discharge of industrial effluents along the river. The enrichment of P and ammoniacal-nitrogen (NH4+-N) in water were obvious. For most sites, the P concentration exceeded 0.1 mg/l, which is the recommended concentration in flowing water to encourage excessive growth of aquatic plants. Nine out of the 16 sites studied had NH4+-N concentration over 2 mg/l. The rivers in the south of Deep Bay (Hong Kong) had high nutrient exports compared with the rivers in the east region and western oceanic water. The concentrations of nitrate-nitrogen NO3--N in surface water were under the maximum contaminant level in public drinking water supplies (10 mg/l) except for one site. Although the concentrations of heavy metals in overlying water were low, their accumulations were significant. High contents of nickel (Ni) and zinc (Zn) in water were found at certain locations, suggesting the occurrence of some local contamination. These preliminary results indicated that river and sediment transported pollutants is likely one of the factors for the water quality degradation of Deep Bay water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号