首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In India coal production will have to be increased to meat theenergy demand at a very high rate. By 2000 AD the coolproduction from opencast (O/C) mining will rise to 250 Mt. whichwill be about 70% of the total coal production. The increasing trend of O/C mining leads to cause air pollution problem. A surveywas conducted to assess the status of work zone air envirnmentdue to opencast coal mining in Jharia Coalfield. Keeping in viewof place of dust generation air quality monitoring stations wereselected. Methodology adapted for sampling and analysis of airpollutants have been described. Four season data revealed thatmaximum concentration of SPM was observed at dragline sectionand the next high concentration was at haul roads. At all thelocations SPM and RPM concentrations exceeded the permissiblelimits specified by Indian Pollution Control Board. Shift wiseand location wise analysis for getting higher concentration ofSO2 and NOx have been discussed. Wind velocity anddirections, mixing heights, ventilation coefficient of the areahave been analyzed. Huge dust generation creates vision problemto HEMM operators. The methodology adopted may be utilised onindustrial scale for various sites.  相似文献   

2.
Dust from haul and transport roads are the major source of air pollution in opencast coal mining areas. Dust generated during mining operations pollutes air which causes different health problems. Various available techniques are implemented in the field to minimize and control dust in mining areas. However, they are not very effective because dust deposited on road surfaces are not removed by these techniques. For effective control of dust in opencast mining areas, it has to be regularly collected from road surfaces and may be converted into solid form, and subsequently can be used as a domestic fuel considering its physicochemical properties. The present paper describes a comparative study of qualitative and quantitative aspects of road dust samples of four coalfields of India. The pH of the dust was found to be in the range of 5.1–7.7. Moisture, ash, volatile matter, fixed carbon, water-holding capacity, bulk density, and specific gravity of dust samples were found to be in the range of 0.5–3.0%, 45–76%, 12.6–20.0%, 10.2–45.3%, 21.17–31.71%, 1.15–1.70, and 1.73–2.30 g cm−3, respectively. Observing the overall generation and characteristics of coal dust, it is suggested that coal dust from haul and transport roads of mining areas can be effectively collected and used as domestic fuel.  相似文献   

3.
The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly proposed environmental water quality index (EWQI) lead to better trend in the impact of coal and coal seam gas mining activities on surface water quality when compared to the upstream reference water samples. Metal content limits were based on the impact points assigned by the Agency for Toxic Substances and Disease Registry, USA. For environmental and health impact assessment, the approach used in this study can be applied as a model to provide a basis to assess the anthropogenic contribution from the industrial and mining activities on the environment.  相似文献   

4.
The purpose of this research is to establish an environmental management zoning for coal mining industry which is served as a basis for making environmental management policies. Based on the specific impacts of coal mining and regional characteristics of environment and resources, the ecological impact, water resources impact, and arable land impact are chose as the zoning indexes to construct the index system. The ecological sensitivity is graded into three levels of low, medium, and high according to analytical hierarchy processes and gray fixed weight clustering analysis, and the water resources sensitivity is divided into five levels of lower, low, medium, high, and higher according to the weighted sum of sub-indexes, while only the arable land sensitive zone was extracted on the basis of the ratio of arable land to the county or city. By combining the ecological sensitivity zoning and the water resources sensitive zoning and then overlapping the arable-sensitive areas, the mainland China is classified into six types of environmental management zones for coal mining except to the forbidden exploitation areas.  相似文献   

5.
6.
Five heavy metals Cu, Cd, Mn, Pb and Hg were found in high concentration from three sampling sites located in Asia’s largest anthropogenic lake Govind Ballabh Pant GBP Sagar. Concentrations of these heavy metals were measured in Water, bottom sediment and in different parts of the aquatic macrophytes collected from the reservoir. Plants collected from the lake were Eichhornia crassipes, Azolla pinnata, Lemna minor, Spirodela polyrrhiza, Potamogeton pectinatus, Marsilea quadrifolia, Pistia stratiotes, Ipomea aquqtica, Potamogeton crispus, Hydrilla verticillata and Aponogeton natans. These plants have shown the high concentrations of Cu, Cd, Mn, Pb and Hg in their different parts due to bioaccumulation. In general plant roots exhibited higher concentrations of heavy metals than corresponding sediments. A comparison between different morphological tissues of the sampled plants reveled the metal concentration in following order roots > leaves. Analyses of bottom sediment indicated the higher concentrations of Cd, Mn, Cu and Pb. Strong positive correlations were obtained between the metals in water and in plants as well as between metal in sediment and in plants. Indicating the potential of these plants for pollution monitoring of these metals.  相似文献   

7.
Two social impact assessment (SIA) studies of Central Queensland's Coppabella coal mine were undertaken in 2002–2003 and 2006–2007. As ex post studies of actual change, these provide a reference point for predictive assessments of proposed resource extraction projects at other sites, while the longitudinal element added by the second study illustrates how impacts associated with one mine may vary over time due to changing economic and social conditions. It was found that the traditional coupling of local economic vitality and community development to the life cycle of resource projects—the resource community cycle—was mediated by labour recruitment and social infrastructure policies that reduced the emphasis on localised employment and investment strategies, and by the cumulative impacts of multiple mining projects within relative proximity to each other. The resource community cycle was accelerated and local communities forced to consider ways of attracting secondary investment and/or alternative industries early in the operational life of the Coppabella mine in order to secure significant economic benefits and to guard against the erosion of social capital and the ability to cope with future downturns in the mining sector.  相似文献   

8.
A study for assessment and management of air quality was carried out in the Ib Valley area of the Ib Valley coalfield in Orissa state, India. The 24 h average concentrations of suspended particulate matter (SPM), respirable particulate matter (RPM), sulfur dioxide (SO(2)) and oxides of nitrogen (NO(x)) were determined at regular intervals throughout one year at twelve monitoring stations in residential areas and six monitoring stations in mining/industrial areas. The 24 h average SPM and RPM concentrations were 124.6-390.3 microg m(-3) and 25.9-119.9 microg m(-3) in residential areas, and were 146.3-845.2 microg m(-3) and 45.5-290.5 microg m(-3) in industrial areas. During the study period, 24 h and annual average SPM and RPM concentrations exceeded the respective standards set in the Indian national ambient air quality standard (NAAQS) protocol as well as USEPA, EU, WHO and World Bank standards at most of the residential and industrial areas. However, concentrations of SO(2)(annual average: 24.6-36.1 microg m(-3) and 24 h average: 17.0-46.3 microg m(-3)) and NO(x)(annual average: 23.6-40.9 microg m(-3) and 24 h average: 18.3-53.6 microg m(-3)) were well within the prescribed limit of the NAAQS and international standards in both residential and industrial areas. The temporal variations of SPM and RPM fitted polynomial trends well and on average in the mining area 31.91% of the SPM was RPM. The linear regression correlation coefficients between SPM and RPM and between NO(x) and SO(2) were 0.94 (+/-0.04) and 0.66 (+/-0.10), respectively. The optimum interpolation technique, kriging, determined that maximal concentrations of SPM and RPM occurred within the mining site. Highest concentrations of particulate matter were observed during the winter season followed by summer, autumn and rainy seasons. An action plan is formulated for effective control of air pollution at source, and mitigative measures should include implementation of green belts around the sensitive areas where the concentration of air pollutants exceeds the standard limit.  相似文献   

9.
Coal extraction remains supported in many countries despite a global context challenging the industry. A large evidence base links coal with negative consequences for human health. Environmental assessments (EAs) are regulated in nearly every country to assess and set conditions for large industry projects, including coal mines, but tend to exclude health impacts. This study investigated the institutional dynamics surrounding the inclusion of health in coal mining EAs in New South Wales, Australia. Semi-structured interviews with varied stakeholders were supported by a review of legislation, relevant case law and media analysis. Using insights from theories on power and institutions the findings show how EA practice is influenced by the politicization of coal mining that excludes potentially negative narratives surrounding the known human health impacts of coal. Poor EA practice is compounded by legislative ambiguity and lack of conceptual understanding about assessing health. EA's legislative purpose of approving projects undermines confidence that a balanced assessment of impacts has been made. EA is seen as a pro-industry process that disempowers those with dissenting voices. The research explains how the institutional dynamics of a policy process like EA challenge its potential to meaningfully engage with the impact of coal mining on human health.  相似文献   

10.
对煤矿矿井废水进行机械作用,实现清、污分离,清水回用,煤泥渣统一处理,使煤矿矿井废水实现零排放.  相似文献   

11.
Pyrite oxidation and release of the oxidation products from a low-grade coal waste dump to stream, groundwater and soil was investigated by geochemical and hydrogeochemical techniques at Alborz Sharghi coal washing plant, Shahrood, northeast Iran. Hydrogeochemical analysis of water samples indicates that the metal concentrations in the stream waters were low. Moreover, the pH of the water showed no considerable change. The analysis of the stream water samples shows that except the physical changes, pyrite oxidation process within the coal washing waste dump has not affected the quality of the stream water. Water type was determined to be calcium sulphate. The results of the analysis of groundwater samples indicate that the pH varies from 7.41 to 7.51. The concentrations of the toxic metals were low. The concentration of SO4 is slightly above than its standard concentration in potable water. It seems that the groundwater less affected by the coal washing operation in the study area. Geochemical analysis of the sediment samples shows that Fe concentration decreases gradually downstream the waste dump with pH rising. SO(4) decreases rapidly downstream direction. Copper, Zn and Co concentrations decrease with distance from the waste dump due to a dilution effect by the mixing of uncontaminated sediments. These elements, in particular, Zn are considerably elevated in sediment sample collected at the nearest distance to the waste dump. There is no doubt that such investigations can help to develop an appropriate water remediation plan.  相似文献   

12.
13.
Concentrations of black carbon and nitrogen dioxide have been collected concurrently using a MicrAeth AE-51 and an Aeroqual GSS NO(2) sensor. Forty five sampling events with a duration spanning between 16 and 22 hours have collected 10,800 5 min data in Birmingham (UK) from July to October 2011. The high temporal resolution database allowed identification of peak exposures and which activities contributed the most to these peaks, such as cooking and commuting. Personal exposure concentrations for non-occupationally exposed subjects ranged between 0.01 and 50 μg m(-3) for BC with average values of 1.3 ± 2.2 μg m(-3) (AM ± SD). Nitrogen dioxide exposure concentrations were in the range 相似文献   

14.
Zoning for the eco-geological environment (EGE) aims to protect and improve the regional ecological environment. It is the basis for evaluating the ecological characteristics of a mining area prior to mining activities and has the purpose of implementing water-preserved mining according to zoning type. In this study, four EGE types were proposed following field investigation in the Yushenfu mining area: oasis type with phreatic water and bottomland in desert (OTPWBD), oasis type with surface water and valley river (OTSWVR), loess gully type with surface runoff (LGTSR), and regional deep groundwater enrichment type (RDGET). Nine EGE evaluation indices were selected: rainfall, evaporation capacity, Luohe formation thickness, surface elevation, Sara Wusu aquifer water abundance, surface lithology, topography, slope, and normalized difference vegetation index (NDVI). Remote sensing technology and geographic information systems were first used to generate the evaluation index thematic maps. Then, the weight of each evaluation index was determined based on an analytic hierarchy process (AHP). Third, the index weight was used to form an improved weighted fuzzy C s clustering algorithm, and EGE zones were assigned using the MATLAB computing platform. For comparison, the AHP was also adopted for EGE zoning and a map of zoning differences was obtained. Finally, EGE field surveys of typical mines were carried out, which verified that EGE zoning using fuzzy clustering was accurate and reasonable.  相似文献   

15.
Considering growing population and decreasing mineral resource reserves, the issue of undermining has been and shall remain very topical. This study aims to identify the mutual connections between mined out panels of a deposit and the final manifestations on the ground surface related to deep black coal mining. On the grounds of the identified connections, the study describes a method to simplify a common evaluation of undermined areas according to building site categories. Within the study, a demarcation of the areas was conducted in two localities in Czech Republic influenced by the effects of undermining in the Upper-Silesian Basin. In the allotment of the CSM Mine, an area unsuitable for founding structures was defined from the centre of the worked out workings to the distance of 175 m from the panel's edge, for which the corresponding break angle is 78.3°. Similarly, in the allotment of the Paskov Mine, an area unsuitable for founding structures was determined to the distance of 500 m from the panel's edge, for which the corresponding break angle is 50.2°. This demarcation may be implemented prior to deposit mining being aware of several physical-mechanical parameters of rocks in the deposit's overburden. Having mined out a particular section of a deposit, it is recommended to verify the values of break angle using the method described herein. The study may be applied as a relatively fast and effective method to evaluate future land use for planning.  相似文献   

16.
Given the growing amount of attention shown to the social dimension of natural resources and mining governance, there is a need for more informed research-oriented approaches to studying social impacts. This article analyzes the features of Social Impact Assessment (SIA) studies from the academic research perspective and presents a framework for social impact research. By academic research, the article refers to studies on social impacts conducted purely for research purposes, not impact assessment processes.Research is always one aspect of the SIA process. At the same time, there is a lack of general methodological literature offering guidance on how assessing social impacts can contribute to social studies research. The guiding documents on SIA are largely intended for practical-level planning and management processes, which limits their applicability for academic purposes. The proposed framework draws both from traditional social science methods and existing scholarly and guiding literature on SIA. The research framework consists of four interlinked phases: 1) research preparations, 2) background studies (including proposed project, national and local context), 3) fieldwork, and 4) analysis. The framework is designed to direct attention to the relevant aspects of research methods, theory building, fieldwork implementation, and research choices for data analysis. Thus, the framework provides a flexible, but comprehensive, multi-level approach for examining social impacts, which can be adapted for a wide range of social-scientific mining research. The analysis and developed framework will help academic researchers better study the social impacts of mining and make better use of existing SIA studies in academic life.  相似文献   

17.
18.
Sulphate-sulphur levels were determined in topsoils from areas of varying vehicular traffic densities, population densities and industrial activities in Ibadan City, Nigeria. The factors of traffic and population densities, as well as industrial activities, had been shown to correlate positively with ambient sulphur dioxide levels.The soil-SO 4 = levels correlated positively with gradients in the factors tested. Vehicular traffic density variations had the most pronounced and significant effect on the SO 4 = level trend. The results indicate that soil-SO 4 = levels may be indirectly empirically related to ambient sulphur dioxide levels derived from diffuse sources.  相似文献   

19.
20.
Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号