首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
孤立与非孤立城市街道峡谷内污染物扩散   总被引:2,自引:0,他引:2  
通过求解二维不可压N-S方程、k-ε方程及污染物对流扩散方程,模拟了孤立街道峡谷与非孤立街道峡谷内的流场及交通污染物浓度场.计算结果与风洞试验结果总体趋势一致.非孤立街道峡谷内污染物壁面浓度要大于孤立街道峡谷内的壁面浓度.通过计算街道峡谷建筑屋顶高度处的垂直方向污染物通量,说明了湍流扩散是污染物扩散出街道峡谷的主要原因,其污染物通量总为正,而平均流通量可以为负.非孤立街道峡谷由于平均流流动和湍流流动的总扩散通量减少,造成污染物在街道峡谷内集聚,从而理论上解释了非孤立街道峡谷与孤立街道峡谷污染扩散的差别.  相似文献   

2.
A two-dimensional, steady, kε turbulence model was used to investigate the high Reynolds number skimming flow field of an urban street canyon. We describe the critical canyon width-to-height ratios that distinguish a cascade of vortex patterns that form in an urban street canyon. Details of the flow field are reported that includes the structure of the mean flow field, turbulent kinetic energy, turbulent length scale, turbulent eddy viscosity, and Reynolds stress for three typical different aspect ratios, W/H, of a street canyon. The consequences of vortex layering on vertical transport are explored.  相似文献   

3.
Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316–323, 2009), Xie et al. (J Hydrodyn 21(1): 108–117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975–3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394–406, 2009; J Hazard Mater 192(3): 940–948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon.  相似文献   

4.
Huang H  Akutsu Y  Arai M  Tamura M 《Chemosphere》2000,40(12):1259-1371
The concentration distributions of NOx, PM, HC and CO in an urban street canyon have been estimated using a two-dimensional air quality numerical model based on the k– turbulent model and the atmospheric convection diffusion equation when various cetane improvers were used in diesel fuels. A wind vortex can be found within the street canyon, and the pollutants emitted from the bottom of the street canyon tend to follow the course of the wind field, moving circularly. The addition of cetane improvers can improve the air quality in a street canyon, all of the pollutants were found to decrease with increasing centane number.  相似文献   

5.
A two-dimensional numerical model for evaluating the wind flow and pollutant dispersion within a street canyon was first developed using the FLUENT code, which was then validated against a wind tunnel experiment. Then, the effects of the upstream building width and upwind building arrangement on the airflow and pollutant dispersion inside an isolated street canyon were investigated numerically. The numerical results revealed that: (1) the in-canyon vortex center shifts downwards as the upstream building width increases; (2) the recirculation zone covers the entire upstream building roof for the cases when W/H = 0.5, 1.0, 1.5, and 2.0 (W is the upstream building width and H is the building height), whereas the flow reattaches the upstream building roof for the cases when W/H = 2.5 and 3.0; (3) when the upstream building width is shorter than the critical width WC (= 2H), an increase in the upstream building width leads to an increase in the pollution level on the leeward wall of the canyon and a decrease in the roof-level concentrations at the upstream building; (4) when the upstream building width is longer than the critical width, the roof-level concentrations at the upstream building are negligibly small and the pollution level on the leeward wall of the canyon is almost unaffected by a further increase in the upstream building width; (5) when the buildings are placed upwind of the canyon, the flow attaches the upstream building roof and, therefore, almost none of the pollutants are distributed on the upstream building roof; and (6) the pollution levels inside the canyon and on the downstream building roof increase significantly with the number of upwind buildings.  相似文献   

6.
Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier–Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H?=?1/2, 3/4, and 1) and wind directions (θ?=?90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H?=?1/2 and 1 and wind directions θ?=?112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.  相似文献   

7.
A validated LES model was employed to simulate the street canyons of aspect ratio (AR) 3, 5, and 10. Three, five, and eight vertically aligned primary recirculations were found for the three cases, respectively, which showed decreasing strength with decreasing height. The ground-level wind speeds were found to be very small, making it extremely difficult for the ground-level pollutants to disperse. Local maxima of turbulence intensities were found at the interfaces between the primary recirculations and the shear layer. The pollutant trajectory followed the primary recirculations. High pollutant concentration and variance were found near the buildings where wind flowed upward. Large gradients of pollutant concentration and variance were also observed at the interfaces between the primary recirculations and the shear layer. Detailed analyses of concentration budget showed that the advection terms were responsible for pollutant redistribution within primary recirculations, while the turbulent transport terms were responsible for pollutant penetration between primary recirculations as well as pollutant removal from the street canyon.  相似文献   

8.
A wind tunnel study was performed to examine some turbulent characteristics and statistical properties of the concentration field developing from the steady release of a tracer gas at street level in a canyon amidst urban roughness. The experiment was conducted with the approaching wind direction perpendicular to the street axis and, with a street width to building height aspect ratio equal to one. Concentration time series were recorded at 70 points within the test street cross-section and above. Mean concentrations, variances and related turbulent quantities, as well as other statistical quantities including quantiles were computed. Concentration spectra and autocorrelation functions were also examined. The emphasis is put here on the results concerning mean concentrations and the variance of concentration fluctuations. The main objective of this paper is to put forward potential benefits of the experimental approach taken in this study. Through a simple and already widely studied configuration it is aimed to show how, for modelling purposes, this approach can help improving our understanding of the mechanisms of dipersion of pollution from car exhausts in built-up areas and, with further measurements, how it could assist in drawing specifications for siting monitoring networks.  相似文献   

9.
This paper investigates the impacts of building facades and ground heating on the wind flow and pollutant transport in street canyons using the computational fluid dynamic (CFD) technique. Street canyons of H/W (H representing the building height and W the street width) varied from 0.1 to 2, which covered the basic flow regimes of skimming flow (H/W=1 or 2), wake interference flow (H/W=0.5), and isolated roughness flow (H/W=0.1), were examined in a series of sensitivity tests. Heating that occurred on different surfaces, including ground surface and building façades, posed considerable effects on the street canyon wind flow and pollutant transport compared with those under isothermal conditions. The CFD results showed that the mechanically induced wind flow and pollutant transport were complicated by the buoyancy under temperature stratification. Individual street canyons of different H/W and surface-heating scenarios exhibited their unique wind flow structure and pollutant transport behaviors. Two counter-rotating vortices were calculated in the street canyons of H/W=1, in which the zone of higher pollutant concentration under isothermal conditions was switched from the leeward side to the windward side. In the street canyon of H/W=2, the recirculating wind pattern was perturbed by surface heating that led to the development of either one primary vortex or three closely coupled vortices. Because of the complicated wind structure, the zones of higher pollutant concentration located either on the leeward or windward ground level were subjected to the surface-heating scenarios. Only two vortices were developed inside the street canyon of H/W=0.5. The large primary vortex, centered inside the street canyon, extended above the roof level of the street canyon. Meanwhile, a small secondary vortex was found at the ground-level windward corner whose size results as a function of surface-heating configurations. Finally, in the street canyon of H/W=0.1, an isolated clockwise-rotating vortex was developed beside the leeward building while the wind in the windward side blew in the prevailing wind direction. As a result, air pollutant emitted at the street centerline was unlikely to be carried into the leeward vortex. Instead, it was dispersed rapidly on the windward side before being removed from the street canyon.  相似文献   

10.
In 1997, a measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki. Hourly mean concentrations of CO, NOx, NO2 and O3 were measured at street and roof levels, the latter in order to determine the urban background concentrations. The relevant hourly meteorological parameters were measured at roof level; these included wind speed and direction, temperature and solar radiation. Hourly street level measurements and on-site electronic traffic counts were conducted throughout the whole of 1997; roof level measurements were conducted for approximately two months, from 3 March to 30 April in 1997. CO and NOx emissions from traffic were computed using measured hourly traffic volumes and evaluated emission factors. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx (fractional bias were −4.2 and +4.5%, respectively), but the model overpredicted the measured NO2 concentrations (fractional bias was +22%). The agreement between the measured and predicted values was also analysed in terms of its dependence on wind speed and direction; the latter analysis was performed separately for two categories of wind velocity. The model qualitatively reproduces the observed behaviour very well. The database, which contains all measured and predicted data, is available for further testing of other street canyon dispersion models. The dataset contains a larger proportion of low wind speed cases, compared with other available street canyon measurement datasets.  相似文献   

11.
Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.  相似文献   

12.
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant.  相似文献   

13.
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.  相似文献   

14.
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k? turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.  相似文献   

15.
Street canyon ventilation and atmospheric turbulence   总被引:4,自引:0,他引:4  
Operational models for pollutant dispersion in urban areas require an estimate of the turbulent transfer between the street canyons and the overlying atmospheric flow. To date, the mechanisms that govern this process remain poorly understood. We have studied the mass exchange between a street canyon and the atmospheric flow above it by means of wind tunnel experiments. Fluid velocities were measured with a Particle Image Velocimetry system and passive scalar concentrations were measured using a Flame Ionisation Detector. The mass-transfer velocity between the canyon and the external flow has been estimated by measuring the cavity wash-out time. A two-box model, used to estimate the transfer velocity for varying dynamical conditions of the external flow, has been used to interpret the experimental data. This study sheds new light on the mechanisms which drive the ventilation of a street canyon and illustrates the influence of the external turbulence on the transfer process.  相似文献   

16.
A combined Lagrangian stochastic model with a micromixing sub-model is used to estimate the fluctuating concentrations observed in two wind tunnel experiments. The Lagrangian stochastic model allows fluid trajectories to be simulated in the inhomogeneous flow, while the mixing model accounts for the dissipation of fluctuations using the interaction by exchange with the mean (IEM) mechanism. The model is first tested against the open terrain, wind tunnel data of Fackrell, J.E. and Robins, A.E. [1982. Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. Journal of Fluid Mechanics 117, 1–26] and shows good agreement with the observed mean concentrations and fluctuation intensities. The model is then compared with the wind tunnel simulation of a two-dimensional street canyon by Pavageau, M. and Schatzmann, M. [1999. Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmospheric Environment 33, 3961–3971]. Despite the limitations of the k–ε turbulence scheme and the IEM mixing mechanism, the model reproduces the fluctuation intensity pattern within the canyon well. Overall, the comparison with both sets of wind tunnel experiments are encouraging, and the simplicity of the model means that predictions in a complex, three-dimensional geometry can be produced in a practicable amount of time.  相似文献   

17.
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.  相似文献   

18.
For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.  相似文献   

19.
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.  相似文献   

20.
The Environment Act 1995 has introduced the notion of local air quality management which requires that air quality in towns be reviewed and assessed. There is a need to identify those streets that are worst affected by vehicular pollutants. Such worst cases are likely to be narrow congested streets with tall buildings on each side. A nomogram presented here allows rapid screening of pollution in congested street canyons. The strong dependence on wind direction is reduced to the two extremes, namely wind along and wind across the canyon. Then canyon concentrations are estimated according to street geometry and traffic flow. The nomogram is designed for use by local authorities, is quick and easy to use, and paper or computer versions are available. It is suggested that detailed monitoring or modelling may only be required when simple screening methods predict high air pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号