首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Analysis of oil spills data confirms that accidental oil spills are natural phenomenon and that there is a relationship between accidental oil spills and variables like vessel size, vessel type, time and region of spill. The volume of oil spilled bears relationship with the volume of petroleum imports and domestic movement of petroleum and proportion of large oil spills. Finally, navigational risk increases with increase in marine traffic and is also determined by variables like hydrographic and meteorological conditions, water configuration, maneuvering space, obstructions and nuisance vessels. The Oil Pollution Act, 1990 (OPA 90) was passed by the US Congress in the aftermath of 11 million gallon spill of crude oil in Prince William Sound, Alaska. The objective of OPA 90 was to minimize marine casualties and oil spills by addressing preventive, protective, deterrent and performance aspects of accidental oil spills. The arm of various regulations like double-hull tankers and vessel response plans extended to both US flagged and foreign-flagged tank vessels. The cost–benefit analysis of major regulations shows that the estimated costs exceed estimated benefits. We observe from USCG data on oil spills by size, by vessel type, Coast guard district and type of petroleum product that there have been significant reductions in the number and the quantity of oil spills. Our regression results show that the quantity of oil spilled increases with increase in oil imports but increases at a decreasing rate. The quantity of oil spilled decreases with increases in the domestic oil movements. Furthermore, percent of oil spills larger than 10,000 gallons also increases the potential quantity of oil spilled. OPA 90 has been a deterrent to accidental oil spills but the finding is not conclusive.  相似文献   

2.
Estimates of occurrence rates for offshore oil spills are useful for analysis of potential oil spill impacts and for oil spill response contingency planning. As the Oil Pollution Act of 1990 (U.S. Public Law 101–380, 18 August 1990) becomes fully implemented, estimates of oil spill occurrence will become even more important to natural resource trustees and to responsible parties involved in oil and gas activities. Oil spill occurrence rate estimates have been revised based on U.S. Outer Continental Shelf platform and pipeline spill data (1964–1992) and worldwide tanker spill data (1974–1992). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. The revisions indicate that estimates for the platform spill occurrence rates declined, the pipeline spill occurrence rates increased, and the worldwide tanker spill occurrence rates remained unchanged. Calculated for the first time were estimates of tanker and barge spill rates for spills occuring in U.S. waters, and spill occurrence rates for spills of North Slope crude oil transported by tanker from Valdez, Alaska. All estimates of spill occurrence rates were restricted to spills greater than or equal to 159 m3 (1000 barrels).  相似文献   

3.
Estimates of occurrence rates for offshore oil spills are useful for analyzing potential oil-spill impacts and for oil-spill response contingency planning. With the implementation of the Oil Pollution Act of 1990 (US Public Law 101-380, August 18, 1990), estimates of oil-spill occurrence became even more important to natural resource trustees and to responsible parties involved in oil and gas activities.Oil-spill occurrence rate estimates have been revised based on US Outer Continental Shelf (US OCS) platform and pipeline spill data (1964 through 1999), worldwide tanker spill data (1974 through 1999), and barge spill data for US waters (1974–1999). These spill rates are expressed and normalized in terms of number of spills per volume of crude oil handled. All estimates of spill occurrence rates were restricted to spills greater than or equal to 1000 barrels (159 m3, 159 kl, 136 metric tonnes, 42,000 US gallons).The revisions compared to the previously published rates calculated through 1992 (Anderson and LaBelle, 1994) indicate that estimates for the US OCS platform spill occurrence rates continue to decline, primarily because no spills have occurred since 1980. The US OCS pipeline spill occurrence rates for spills greater than or equal to 1000 barrels remained essentially unchanged. However, the rate for larger OCS pipeline spills (greater than or equal to 10,000 barrels) has decreased significantly. Worldwide tanker spill rates, rates for tanker spills in US waters, and rates for barge spills in US waters decreased significantly. The most recent 15-year estimates for 1985–1999 (compared to rates for the entire data series) showed that rates for US OCS platforms, tankers, and barges continued to decline.  相似文献   

4.
The Oil Pollution Act of 1990 (OPA 90) was largely driven by the catastrophic EXXON VALDEZ tanker spill and several other major tanker spills that followed in 1989. Under the OPA 90 mandate, the US Coast Guard, in partnership with other Federal agencies and industry have implemented a number of initiatives that have significantly enhanced the national oil spill prevention, preparedness and response capability. Declining trends in the volume of oil spilled into US waters indicates that these initiatives are at least in some measure successful.The Coast Guard is now concerned about what the future may hold in terms of oil pollution threats, and prevention, preparedness and response program shortcomings and opportunities in the future. To address this issue, the Coast Guard, in partnership with other National Response Team agencies and industry, is conducting a Broad-Based Programmatic Risk Assessment to develop a comprehensive vision and strategy for the Oil Spill Prevention, Preparedness and Response (OSPPR) Program in the 21st Century. This study will characterize the current and emerging oil spill threats by source category, assess the potential impacts of these threats to define overall risk, and examine the current and projected effectiveness of OSPPR initiatives in minimizing these risks. Key issues, problems and focus areas will be identified and targeted for follow-on risk analysis and management activities by the Coast Guard and agency and industry stakeholders.  相似文献   

5.
6.
Australia's National Plan to Combat Pollution of the Sea by Oil and Other Noxious and Hazardous Substances (the National Plan) has operated since 1973. The objectives of the National Plan are based on Australia's obligations as a signatory to the International Convention on Oil Pollution Preparedness, Response and Co-operation 1990 and a responsibility to protect natural and artificial (man made) environments from the adverse effects of oil pollution and minimise those effects where protection is not possible.The Australian Maritime Safety Authority (AMSA) is the managing agency of the National Plan, working together with the States and Northern Territory governments, other Commonwealth agencies, ports, and the shipping, oil and exploration industries, to maximise Australia's marine pollution response capability.The 1990s have been a period of significant change for oil spill response arrangements in Australia. The National Plan was extended in 1998 to cover chemical spills and is currently in the process of implementing the oil spill response incident control system (OSRICS). A fixed wing aerial dispersant spraying capability was implemented in 1996 and a research and development program has been put in place. The development of a computer-based National Oil Spill Response Atlas was a major project completed during 1999.  相似文献   

7.
In view of the quantity of oil spilled, smaller spills generally receive less attention than headline grabbing incidents such as the “Amoco Cadiz”, “Exxon Valdez”, “Braer” and “Sea Empress”. The latter incidents involve the loss of significant quantities of oil, the establishment of relatively complex spill response management structures and the involvement of significant numbers of personnel and equipment. As such, large spills from tankers have the potential to create problem areas, for example in establishing and maintaining effective communications, logistics and resource management systems.In general terms spill response personnel are well aware that large spills come complete with significant operational and administrative problems, however what may not be so well recognised is that smaller spills also have the potential to present response personnel with their own unique problems.One of the major problems to be overcome when responding to spills in Australia is the “tyranny of distance”. In quite a few responses, Australian oil spill response managers have had to move personnel and equipment thousands of kilometres to provide an effective outcome. This paper outlines a range of problems that have been encountered by Australian personnel over the years. These include health and safety, communications, logistics and equipment issues.For the purpose of this paper a “smaller” spill has been defined as one involving a discharge of less than 1000 tonnes of oil.  相似文献   

8.
This paper focuses on the cost recovery issues arising through the operation of the International Oil Pollution Compensation Fund (IOPC) and administrative matters which arose following the Braer and Sea Empress oil tanker pollution incidents in the UK. Each of these oil spills brought very different problems.Any major oil spill will have prolonged economic and social consequences for the communities affected. Membership of the International Oil Pollution Compensation Fund (IOPC Fund) will do much to soften the impact as regards economic damage. However, the operation of the Fund brings difficulties which may not have been considered by the administration prior to the spill. Some of the difficulties are foreseeable.It covers details of the international compensation and liability regimes, it considers a number of administrative consequences and highlights seven lessons that have been learned in the UK in the light of recent experience. These lessons are:
  • •Claims may not be paid quickly or in full.
  • •Claimants will need advice and government involvement.
  • •Action by the government may be needed to complement the IOPC Fund.
  • •Governments have to balance their obligations as a member state with the needs of claimants.
  • •It is better for claimants to keep matters out of court for as long as possible.
  • •Administrative consequences will continue for a long time after the oil has been cleared from the shoreline.
  • •Each major oil spill brings different cost recovery problems and will also bring demands ‘to learn the lessons’.
In much the same way as contingency plans are regularly tested, each state party to the regime would be wise, from time to time, to think through the likely scenarios so as to better prepare themselves in the light of experiences elsewhere. The United Kingdom has had rather more experience in recent years than it would have wished!  相似文献   

9.
In this paper we argue that the Exxon Valdez oil spill gained so much attention because of its setting in Alaska. Alaska symbolizes for many Americans the wilderness or frontier that has long been part of American thought. At the same time, American national development has largely depended on the discovery and use of the nation’s abundant natural resources. The setting of the Valdez spill in the seemingly pristine waters of Prince William Sound brought the tension between our national identification with wilderness and our national need for further natural resource exploitation into sharp focus. In the aftermath of the spill, a legislative deadlock was passed and the Oil Pollution Act of 1990 was passed. The Valdez accident had longer-term consequences as well, most prominent of which is related to the ongoing debate over whether to open up the coastal plain in the Arctic National Wildlife Refuge to further development.  相似文献   

10.
The United States Oil Pollution Act of 1990 (OPA) was enacted to reduce the probability of oil spills in U.S. waters. A key provision of the legislation enables recovery of damages for restoration of injured natural resources and lost services due to oil spills. The National Oceanic and Atmospheric Administration (NOAA) developed regulations that set out a process for determining the appropriate type and scale of restoration actions to accomplish this goal. The restoration plan developed through this process is the basis for an economic claim for natural resource damages. The regulations recognize that various methods, including environmental models, may be used in identifying and quantifying injuries to natural resources and losses of their services and in developing a restoration approach for these injuries. Rather than designating particular assessment measures, NOAA requires each trustee to decide which methodologies are appropriate for each incident, given its particular facts and circumstances. Any procedure chosen must meet the standards in the rule: it must provide information useful for determining restoration needed for an incident, the cost of the method must be commensurate with the quality and quantity of information it is expected to generate, and, of particular significance here, the method must be reliable and valid for the particular incident. This paper describes how methods are selected, how they might be used, and what legal standards would be applied should these methods be used as evidence in litigation.  相似文献   

11.
The Egyptian national marine oil pollution contingency plan was urgently initiated after the Nabila oil spill in 1982, to provide an estimate of its environmental effects on the Egyptian Red Sea coastal areas and to determine geomorphological features and cuastal processes, together with physical, chemical and biological baseline data for this tropical environment.The ‘Vulnerability Index’ (VI) was applied to evaluate and calibrate the effect of the Nabila oil spill on the Egyptian Red Sea Coastal area. A detailed in situ coastal survey was conducted during two visits in November 1982 and May 1983 to 80 shore sites from Suez to Ras Banas to monitor the oil pollution and to apply the ‘Vulnerability Index’. A comparative assessment of the index over time by comparing it with a quick ground inspection in November 1993 to some sites to evaluate the applicability of this index for oil spills in such environments. In addition, the physical effects of fresh and weathered crude oil and/with dispersant on water filtration by different beaches were preliminary studied.The geomorphological/Vulnerability Index results show that most of the Egyptian Red Sea coastal environments have medium to high vulnerability to immediate and medium term oil spill damage. The oil pollution spread estimated to be 250 km south of the oil spill and about 200 km north of it. The quantity of oil along the shoreline was reduced by about 60% due to natural and authorities clean up. The third survey after 11 years showed that the VI could be used as a predictive tool for assessment of oil spill effects on such tropical environments.  相似文献   

12.
This study evaluated the feasibility of conducting in situ burning (ISB) using current technology on post-1967 major oil spills over 10 000 barrels in North America and over 50 000 barrels in South America and Europe. A diverse set of 141 spills representing various combinations of parameters affecting spill responses (e.g., spill size, oil type, weather conditions, sea temperature, and geographic location) were evaluated using four “Phase I” criteria: Distance to populated area, oil weathering, logistics, and weather conditions. In Phase I, a spill that failed to meet one of the four criteria was considered an “unsuccessful” candidate for ISB. In total, 47 of the 141 spills passed the Phase I analysis. The potential effect of the plume on populated areas was the most significant of the four Phase I criteria; 59 of the 141 spills did not pass Phase I because the incident occurred near a sizable city. Spills that met all four criteria were further evaluated using a “Phase II” analysis that applied additional criteria and considered individual spill circumstances to determine if the spill should be rated as a “successful”, “marginal call”, or “unsuccessful” ISB candidate. Fourteen spills were ultimately determined successful in the Phase II analysis, and 12 were designated marginal calls.  相似文献   

13.
For oil spills in the open sea, operational experience has found that conventional response techniques, such as mechanical recovery, tend to remove only a small fraction of oil during major spills, a recent exception being the Mississippi River spill in Louisiana [Spill Sci. Technol. Bull. 7 (2002) 155]. By contrast, the use of dispersants can enable significant fractions of oil to be removed from the sea surface by dispersing the oil into the water column. It is thought that once dispersed the oil can biodegrade in the water column, although there is little information on the mechanism and rate of biodegradation. Two studies were undertaken on dispersion, microbial colonisation and biodegradation of Forties crude and Alaskan North Slope (ANS) oils under simulated marine conditions. The study using the Forties crude lasted 27 days and was carried out in conditions simulating estuarine and coastal conditions in waters around the UK (15 °C and in the presence of nutrients, 1 mg N-NO3/l), while the ANS study simulated low temperature conditions typical of Prince William Sound (8 °C) and took place over 35 days. The results of both studies demonstrated microbial colonisation of oil droplets after 4 days, and the formation of neutrally buoyant clusters consisting of oil, bacteria, protozoa and nematodes. By day 16, the size of the clusters increased and they sank to the bottom of the microcosms, presumably because of a decrease in buoyancy due to oil biodegradation, however biodegradation of n-alkanes was confirmed only in the Forties study. No colonisation or biodegradation of oil was noted in the controls in which biological action was inhibited. Oil degrading bacteria proliferated in all biologically active microcosms. Without dispersant, the onset of colonisation was delayed, although microbial growth rates and population size in ANS were greater than observed with the Forties. This difference reflected the greater droplet number seen with ANS at 8 °C than with Forties crude at 15 °C. Although these studies differed by more than one variable, complicating comparison, the findings suggest that dispersion (natural or chemical) changes the impact of the oil on the marine environment, potentially having important implications for management of oil spills in relation to the policy of dispersant use in an oil spill event.  相似文献   

14.
Journal of Material Cycles and Waste Management - The enactment of the Waste Act in 2008 represents a milestone in Indonesian waste management legislation, particularly in relation to landfill...  相似文献   

15.
A 3-D hybrid flow/transport model has been developed to predict the dispersal of oil pollution in coastal waters. The transport module of the model takes predetermined current and turbulent diffusivities and uses Lagrangian tracking to predict the motion of individual particles (droplets), the sum of which constitute a hypothetical oil spill. Currents and turbulent diffusivities used in the model have been generated by a numerical ocean circulation model (Princeton ocean model) implemented for the Caspian Sea. The basic processes affecting the fate of the oil spill are taken into account and parameterized in the transport model.The hybrid model is implemented for a simulated continuous release in the coastal waters of the Caspian Sea. The potential of the model for the prediction of the advective and turbulent transport and dispersal of oil spills is demonstrated.  相似文献   

16.
There is growing acceptance worldwide that use of dispersants to counter the effects of an oil spill offers many advantages and can often result in a net environmental benefit when considered in relation to other response options. A major reason for this growing support and increased reliance on dispersants is the advent of improved dispersant products that are low in toxicity to marine life and more effective at dispersing heavy and weathered oils – oils previously believed to be undispersible. This capability has been demonstrated through extensive laboratory testing, field trials, and dispersant application on actual spills. This paper summarizes recent advances in dispersant R&D and reviews the implications of technology advances.  相似文献   

17.
This paper summarizes the development, field testing and performance evaluation of the Transrec oil recovery system including the Framo NOFO Transrec 350 skimmer and multi-functional oil spill prevention and response equipment and presents performance data, not published before, from full-scale experimental oil spills in the North Sea from 1981 to 1990. The rare data provides useful information for evaluation of mechanical clean-up capabilities and efficiency, in particular, for responders who are using this equipment in many countries around the world.The development of the Transrec oil recovery system represents one of the most comprehensive efforts funded to date by the oil industry in Norway to improve marine and open ocean oil spill response capabilities. The need for improvements was based upon early practical user experience with different oil recovery systems, and test results from experimental oil spills in the North Sea.The result of the development efforts increased: (1) skimmer efficiency from approximately 15–75% (it reached 100% under favorable environmental conditions); (2) oil emulsion recovery rate from approximately 20–300 m3/h; (3) recovery system efficiency from approximately 15–85% in 1.5 m significant wave height; (4) oil emulsion thickness from approximately 15–35 cm; (5) weather-window for mechanical recovery operations from 1.5 to 3.0 m significant wave height; (6) capability for transfer of recovered oil residue to shuttle tankers in up to 4 m significant wave height and 45 knot winds; (7) capability for operations at night.The new Transrec oil recovery system with the special J-configuration virtually eliminated skimming operation downtime, and damage to booms and equipment failures that had been caused by oil spill response vessel (OSRV) problems with maintaining skimming position in the previous three-vessel oil recovery system with the boom towed in U-configuration. The time required to outfit OSRVs dropped from approximately 30–<1 h, reducing time from notification to operation on site by more than 24 h.Improvement in oil recovery resulted in the acceptance of a new oil spill preparedness and response plan. The new plan reduced the need for oil recovery systems from 21 to 14, towing vessels in preparedness from 42 to 18, and personnel on stand-by from 135 to 70, which subsequently reduced the total contingency and operational costs by almost 50%. These cost reductions resulted from lower contingency fees for personnel, fewer towing vessels on stand-by, less expensive open ocean training and exercises, less equipment and reduced storage space to lease, and simplified equipment maintenance.  相似文献   

18.
19.
Long records of geophysical forcing have been used in numerous studies to estimate a statistical distribution of oil spill scenarios. The resulting set of spill scenarios is then used as a basis for planning a robust response capability that should be able to handle all likely real spills. For model developers to be able to support these expectations there are a number of criteria that must be satisfied: (1) Models must develop and retain the data necessary to answer key response questions; (2) developers must understand the limitations in resolution imposed by the specific algorithms they use; and (3) the cardinality of the long geophysical records (with respect to modeled spill behavior) should be determined and the final collection of spill scenarios must span this set. This paper considers these specific constraints and discusses methods that can be used to quantify some aspects of the uncertainty in the output.  相似文献   

20.
The South Arne field being developed by Amerada Hess A/S is located in 60 m water depth approximately 200 km from the Danish mainland, in block 5604/29 of the Danish sector of the North Sea.As part of the development of the field, a comprehensive environmental impact assessment has been carried out, including the assessment of the impact from oil spills. The Danish authorities required that a ‘worst case’ oil spill be chosen as the basis for the assessment on birds and aquatic organisms including plankton, fish eggs and larvae and benthos.A well blow-out at the surface was chosen as the worst case for the impact on birds, and a seabed blow-out for aquatic organisms.The oil spill modelling was carried out with the DEEPBLOW, SLIKMAP and OSCAR models from SINTEF. The modelling identified environmentally sensitive areas which could potentially be influenced by an oil spill. These included the Dogger Bank, western Skagerrak, south-western Norwegian Trench, the eastern German Bight and the Wadden Sea.Historical meteorological and hydrodynamic scenarios were chosen from a long period of records to ensure that the plume passed through the environmentally sensitive resource areas.For birds, a scan of the literature and available databases was made to determine the numbers and species of birds in the areas swept by the surface slick, the number of fatalities was estimated and finally the recovery time for each species population was estimated.The impact on aquatic organisms was estimated using the predicted environmental concentration/predicted no effect concentration (PEC/PNEC) method of the CHARM model. This method is normally applied to continuous discharges, but here has been used to estimate the impact of a transient pollution cloud resulting from an oil spill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号