首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m−2 h−1. An annual emission of ∼8.7×104 g of mercury to the atmosphere was calculated for the 586 km2 area. The bulk of the Hg released into the atmosphere from the district (∼89%) is from naturally enriched non-point sources and ∼11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m−2 h−1) by an order of magnitude.  相似文献   

2.
Experiments were performed to investigate the effect of ozone (O3) on mercury (Hg) emission from a variety of Hg-bearing substrates. Substrates with Hg(II) as the dominant Hg phase exhibited a 1.7 to 51-fold increase in elemental Hg (Hgo) flux and a 1.3 to 8.6-fold increase in reactive gaseous mercury (RGM) flux in the presence of O3-enriched clean (50 ppb O3; 8 substrates) and ambient air (up to ∼70 ppb O3; 6 substrates), relative to clean air (oxidant and Hg free air). In contrast, Hgo fluxes from two artificially Hgo-amended substrates decreased by more than 75% during exposure to O3-enriched clean air relative to clean air. Reactive gaseous mercury emissions from Hgo-amended substrates increased immediately after exposure to O3 but then decreased rapidly. These experimental results demonstrate that O3 is very important in controlling Hg emissions from substrates. The chemical mechanisms that produced these trends are not known but potentially involve heterogenous reactions between O3, the substrate, and Hg. Our experiments suggest they are not homogenous gas-phase reactions. Comparison of the influence of O3 versus light on increasing Hgo emissions from dry Hg(II)-bearing substrates demonstrated that they have a similar amount of influence although O3 appeared to be slightly more dominant. Experiments using water-saturated substrates showed that the presence of high-substrate moisture content minimizes reactions between atmospheric O3 and substrate-bound Hg. Using conservative calculations developed in this paper, we conclude that because O3 concentrations have roughly doubled in the last 100 years, this could have increased Hgo emissions from terrestrial substrates by 65–72%.  相似文献   

3.
Abstract

Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing ~10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing ~10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, ~0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, ~20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from ?50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

4.
Anthropogenic mercury emissions in China   总被引:18,自引:0,他引:18  
An inventory of mercury emissions from anthropogenic activities in China is compiled for the year 1999 from official statistical data. We estimate that China's emissions were 536 (±236) t of total mercury. This value includes open biomass burning, but does not include natural sources or re-emission of previously deposited mercury. Approximately 45% of the Hg comes from non-ferrous metals smelting, 38% from coal combustion, and 17% from miscellaneous activities, of which battery and fluorescent lamp production and cement production are the largest. Emissions are heaviest in Liaoning and Guangdong Provinces, where extensive smelting occurs, and in Guizhou Province, where there is much small-scale combustion of high-Hg coal without emission control devices. Emissions are gridded at 30×30 min spatial resolution. We estimate that 56% of the Hg in China is released as Hg0, 32% as Hg2+, and 12% as Hgp. Particulate mercury emissions are high in China due to heavy burning of coal in residential and small industrial settings without PM controls. Emissions of Hg2+ from coal-fired power plants are high due to the absence of flue-gas desulfurization units, which tend to dissolve the soluble divalent mercury. Metals smelting operations favor the production of elemental mercury. Much of the Hg is released from small-scale activities in rather remote areas, and therefore the activity levels are quite uncertain. Also, emissions test data for Chinese sources are lacking, causing uncertainties in Hg emission factors and removal efficiencies. Overall, we calculate an uncertainty level of ±44% (95% confidence interval) in the estimate of total emissions. We recommend field testing of coal combustors and smelters in China to improve the accuracy of these estimates.  相似文献   

5.
Abstract

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+).

The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

6.
Five weeks of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle bound mercury (Hgp) concentrations as well as fluxes of GEM were measured at Maryhill, Ontario, Canada above a biosolids amended field. The study occurred during the autumn of 2004 (October–November) to capture the effects of cool weather conditions on the behaviour of mercury in the atmosphere. The initial concentration of total mercury (Hg) in the amended soil was relatively low (0.4 μg g−1±10%).A micrometeorological approach was used to infer the flux of GEM using a continuous two-level sampling system with inlets at 0.40 and 1.25 m above the soil surface to measure the GEM concentration gradient. The required turbulent transfer coefficients were derived from meteorological parameters measured on site. The average GEM flux over the study was 0.1±0.2 ng m−2 h−1(±one standard deviation). The highest averaged hourly GEM fluxes occurred when the averaged net radiation was highest, although the slight diurnal patterns observed were not statistically significant for the complete flux data series. GEM emission fluxes responded to various local events including the passage of a cold front when the flux increased to 2 ng m−2 h−1 and during a biosolids application event at an adjacent field when depositional fluxes peaked at −3 ng m−2 h−1. Three substantial rain events during the study kept the surface soil moisture near field capacity and only slightly increased the GEM flux. Average concentrations of RGM (2.3±3.0 pg m−3), Hgp (3.0±6.2 pg m−3) and GEM (1.8±0.2 ng m−3) remained relatively constant throughout the study except when specific local events resulted in elevated concentrations. The application of biosolids to an adjacent field produced large increases in Hgp (25.8 pg m−3) and RGM (21.7 pg m−3) concentrations only when the wind aligned to impact the experimental equipment. Harvest events (corn) in adjacent fields also corresponded to higher concentrations of GEM and Hgp but with no elevated peaks in RGM concentrations. Diurnal patterns were not statistically significant for RGM and Hgp at Maryhill.  相似文献   

7.
Atmospheric Mercury Depletion Events (AMDE) occur in Arctic and Antarctic regions during polar sunrise. During AMDE, reactive gaseous Hg is rapidly formed through in-situ oxidation of gaseous Hg0 by halogens, notably atomic Br and radical BrO. This leads to high Hg deposition fluxes yet an unknown fraction of deposited Hg is reemitted to the atmosphere through subsequent photo-reduction, so that the net deposition flux related to AMDE is not well constrained. Here, Hg and halogens were measured in lichens hanging in tree branches around Hudson Bay where AMDE were reported. Hg concentrations are strongly correlated to halogen elements Br, Cl and I (r2 of 0.91, 0.76, 0.81) and decrease with distance from Hudson Bay. We interpret this trend as the result of AMDE, supported by a 1D numerical Br and BrO oxidation model for Hg0. Organic carbon normalized Hg contents of down-core lake sediments reported in the literature also show a decreasing trend away from Hudson Bay. Combined observations suggest that at least 50% of Hg deposited during AMDE is reemitted to the atmosphere. Finally, the latitudinal Hg gradient observed in lake sediments suggests that AMDE were active in the Hudson Bay area during the last 90 to 200 years.  相似文献   

8.
Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

9.
Atmospheric elemental, reactive and particulate mercury (Hg) concentrations were measured north of downtown Reno, Nevada, USA from November 2004 to November 2007. Three-year mean and median concentrations for gaseous elemental Hg (Hg0) were 1.6 and 1.5 ng m−3 (respectively), similar to global mean Hg0 concentrations. The three-year mean reactive gaseous Hg (RGM) concentration (26 pg m−3) was higher than values reported for rural sites across the western United States. Well defined seasonal and daily patterns in Hg0 and RGM concentrations were observed, with the highest Hg0 concentrations measured in winter and early morning, and RGM concentrations being greatest in the summer and mid-afternoon. Elevated Hg0 concentrations in winter were associated with periods of cold, stagnant air; while a regularly observed early morning increase in concentration was due to local source and surface emissions. The observed afternoon increase and high summer values of RGM can be explained by in situ oxidation of gaseous Hg0 or mixing of RGM derived from the free troposphere to the surface. Because both of these processes are correlated with the same environmental conditions it is difficult to assess their overall contribution to the observed trends.  相似文献   

10.
Observations of reactive gaseous mercury (RGM) in marine air show a consistent diurnal cycle with minimum at night, rapid increase at sunrise, maximum at midday, and rapid decline in afternoon. We use a box model for the marine boundary layer (MBL) to interpret these observations in terms of RGM sources and sinks. The morning rise and midday maximum are consistent with oxidation of elemental mercury (Hg0) by Br atoms, requiring <2 ppt BrO in most conditions. Oxidation of Hg0 by Br accounts for 35–60% of the RGM source in our model MBL, with most of the remainder contributed by oxidation of Hg0 by ozone (5–20%) and entrainment of RGM-rich air from the free troposphere (25–40%). Oxidation of Hg0 by Cl is minor (3–7%), and oxidation by OH cannot reproduce the observed RGM diurnal cycle, suggesting that it is unimportant. Fitting the RGM observations could be achieved in the model without oxidation of Hg0 by ozone (leaving Br as the only significant oxidant) by increasing the entrainment flux from the free troposphere. The large relative diurnal amplitude of RGM concentrations implies rapid loss with a lifetime of only a few hours. We show that this can be quantitatively explained by rapid, mass-transfer-limited uptake of RGM into sea-salt aerosols as HgCl3? and HgCl42?. Our results suggest that 80–95% of HgII in the MBL should be present in sea-salt aerosol rather than gas-phase, and that deposition of sea-salt aerosols is the major pathway delivering HgII to the ocean.  相似文献   

11.
An inverse modeling method using the four-dimensional variational data assimilation approach is developed to provide a top-down estimate of mercury emission inventory in China. The mercury observations on board the C130 aircraft during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) campaign in April 2001 are assimilated into a regional chemical transport model, STEM. Using a 340 Mg of elemental mercury emitted in 1999, the assimilation results in an increase in Hg0 emissions for China to 1140 Mg in 2001. This is an upper limit amount of the elemental mercury required in China. The average emission-scaling factor is ∼3.4 in China. The spatial changes in the mercury emissions after the assimilation are also evaluated. The largest changes are estimated on the China north-east coastal areas and the areas of north-center China. The influences of the observation and inventory uncertainties and the initial and boundary conditions on the emission estimates are discussed. Increasing the boundary conditions of Hg from 1.2 to 1.5 ng m−3, results in a top-down estimate of Hg0 emissions for China of 718 Mg, and leads the average scaling factor from 3.4 to 2.1.  相似文献   

12.
This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of 2006. The optical remote sensing (ORS) area source measurement method EPA OTM 10 was used to provide Hg0 flux data for the site. These results are reported and compared with cell room roof-vent monitoring data acquired by the facility for similar time periods. The 24-h extrapolated mercury emission rate estimates determined by the two monitoring approaches are shown to be similar with overall averages in the 400 g day?1 range with maximum values around 1200 g day?1. Results from the OTM 10 measurements, which include both cell room emissions and potential fugitive sources outside the cell room, are shown to be approximately 10% higher than cell room monitoring results indicating that fugitive emissions from outside the cell room produce a small but measurable effect for this site.  相似文献   

13.
Abstract

Bench-scale testing of elemental mercury (Hg0) sorption on selected activated carbon sorbents was conducted to develop a better understanding of the interaction among the sorbent, flue gas constituents, and Hg0. The results of the fixed-bed testing under simulated lignite combustion flue gas composition for activated carbons showed some initial breakthrough followed by increased mercury (Hg) capture for up to ~4.8 hr. After breakthrough, the Hg in the effluent stream was primarily in an oxidized form (>90%). Aliquots of selected activated carbons were exposed to simulated flue gas containing Hg0 vapor for varying time intervals to explore surface chemistry changes as the initial breakthrough, Hg capture, and oxidation occurred. The samples were analyzed by X-ray photoelectron spectroscopy to determine changes in the abundance and forms of sulfur, chlorine, oxygen, and nitrogen moieties as a result of interactions of flue gas components on the activated carbon surface during the sorption process. The data are best explained by a competition between the bound hydrogen chloride (HCl) and increasing sulfur [S(VI)] for a basic carbon binding site. Because loss of HCl is also coincident with Hg breakthrough or loss of the divalent Hg ion (Hg2+), the competition of Hg2+ with S(VI) on the basic carbon site is also implied. Thus, the role of the acid gases in Hg capture and release can be explained.  相似文献   

14.
Abstract

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg0) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg0 to the air if it is initially present or formed by chemical reduction of HgII to Hg0 within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (~100 mg/hr) and from dumpsters in the field (~30 mg/hr for 1,000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg0 signals, indicating that much of the Hg was already present in a metallic (Hg0) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg0 at 10 to >100 μg/hr and continued to act as near constant sources for several days.  相似文献   

15.
The status of the current knowledge concerning the dry deposition of atmospheric mercury, including elemental gaseous mercury (Hg0), reactive gaseous mercury (RGM), and particulate mercury (Hgp), is reviewed. The air–surface exchange of Hg0 is commonly bi-directional, with daytime emission and nighttime deposition over non-vegetated surfaces and vegetated surfaces with small leaf area indices under low ambient Hg0 conditions. However, daytime deposition has also been observed, especially when the ambient Hg0 is high. Typical dry deposition velocities (Vd) for Hg0 are in the range of 0.1–0.4 cm s?1 over vegetated surfaces and wetlands, but substantially smaller over non-vegetated surfaces and soils below canopies. Meteorological, biological, and soil conditions, as well as the ambient Hg0 concentrations all play important roles in the diurnal and seasonal variations of Hg0 air–surface exchange processes. Measurements of RGM deposition are limited and are known to have large uncertainties. Nevertheless, all of the measurements suggest that RGM can deposit very quickly onto any type of surface, with its Vd ranging from 0.5 to 6 cm s?1. The very limited data for Hgp suggest that its Vd values are in the range of 0.02–2 cm s?1.A resistance approach is commonly used in mercury transport models to estimate Vd for RGM and Hgp; however, there is a wide range of complexities in the dry deposition scheme of Hg0. Although resistance-approach based dry deposition schemes seem to be able to produce the typical Vd values for RGM and Hg0 over different surface types, more sophisticated air–surface exchange models have been developed to handle the bi-directional exchange processes. Both existing and newly developed dry deposition schemes need further evaluation using field measurements and intercomparisons within different modelling frameworks.  相似文献   

16.
Abstract

Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg0) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from ~1–10 ng m?2 hr?1 over aged landfill cover, from ~8–20 mg/hr from LFG flares (LFG included Hg0 at μg/m3 concentrations), and from ~200–400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10–50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   

17.
Using the well-known Regional Atmospheric Modelling System (RAMS) version 4.3 an integrated system able to simulate the atmospheric mercury cycle has been developed. Basic processes of the mercury atmospheric cycle have been incorporated into the atmospheric model. The model deals with elemental Hg (Hg0), divalent gaseous Hg (Hg2) and particulate Hg (HgP). Wet deposition mechanisms used to describe the removal of Hg2 and HgP are merged with the detailed cloud microphysical scheme in order to provide better representation of the wet deposition processes. The advantages of this approach have been examined through results intercomparison with simulated Hg wet deposition using CMAQ-Hg from previous work for two evaluation periods: 4 April–2 May 1995, and 20 June–18 July 1995. An attempt to clarify the main parameters that affect wet deposition mechanism of mercury is also made.  相似文献   

18.
Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg−1. Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as μ-XRF, μ-XRD and μ-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 μm. The main Hg-species found in the soil samples were metacinnabar (β-HgS), cinnabar (α-HgS), corderoite (Hg3S2Cl2), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 μm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution.  相似文献   

19.
Atmospheric mercury is composed primarily of Hg0 (>95%), but Hg+2 and particle bound mercury are also found in some environments. The three forms of mercury were measured at the Mount Bachelor Observatory beginning in 2005. Using data gathered from 2005 to 2007, 15 periods were identified during which PHg was above the instrument detection limit of 3 pg m?3 for nine or more consecutive hours. Peak PHg concentrations ranged from 6.0 to 44.3 pg m?3. During these events, PHg is strongly correlated with CO and sub-micron aerosol scatter coefficient (typically R2 > 0.6). Our data suggest that the 15 PHg events were likely due to regional wildfires in California and Oregon. Wildfires were identified as the primary PHg source using a combination of air-mass back-trajectories, MODIS satellite data, and chemical and physical tracers of combustion. Slopes of the PHg/σsp and PHg/CO relationships ranged from 0.20 to 1.57 pg (Mm?1)?1 and 0.11 to 0.61 pg m?3 ppb?1, respectively. The range of slopes may indicate different types of burning (e.g. flaming vs. smoldering), differing amounts of chemical processing, different fuel sources, or different physical parameters such as the plume injection height. The slopes provide constraints for the relationship between PHg, CO, and aerosol scatter from wildfires. Asian long-range transport was not a source of PHg but we cannot rule out the possibility of local U.S. industrial sources of PHg for some of the events. Assuming our observations are representative of global fire emissions, we estimate that PHg represents 15% of the total mercury released from wildfires and is a source of PHg comparable to anthropogenic sources.  相似文献   

20.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号