首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu J  Yang L  Wang Z  Dong G  Huang J  Wang Y 《Chemosphere》2006,62(4):602-607
Pot soil experiments showed that copper (Cu) is highly toxic to rice. Rice grain yields decreased exponentially and significantly with the increase of soil Cu levels. Rice grain yield was reduced about 10% by soil Cu level of 100 mg kg(-1), about 50% by soil Cu level of 300-500 mg kg(-1) and about 90% by soil Cu concentration of 1,000 mg kg(-1). Root was more sensitive to soil Cu toxicity than other parts of rice plant at relatively lower soil Cu levels (less than 300-500 mg kg(-1)), but the growth of whole rice plant was severely inhibited at high soil Cu levels (300-500 mg kg(-1) or above). Cu concentrations in rice grain increased with soil Cu levels below 150-200 mg kg(-1), but decreased with soil Cu levels above 150-200 mg kg(-1), with peak Cu concentration at soil Cu level of 150-20 mg kg(-1). Cu was not distributed evenly in different parts of rice grain. Cu concentration in cortex (embryo) was more than 2-fold that in chaff and polished rice. More than 60% of the Cu in grain was accumulated in polished rice, about 24% in cortex (embryo), and about 12% in chaff. So, about 1/3 of the Cu in rice grain was eliminated after grain processing (chaff, cortex and embryo was removed).  相似文献   

2.
The aim of the study was determination of air pollution impact of the copper smelter in Bor and its surroundings (Serbia) by assessing the suitability of birch (Betula pendula Roth.) and spruce (Picea abies L.) for the purposes of biomonitoring and comparing it with previously published data from the same study area. The concentrations of Cu, Zn, Pb and Mn in leaves/needles, branches, roots and soil were determined. Sampling was performed during 2009 in two zones with high load of air pollution due to copper mining and smelting activities, and one background zone. Metal accumulation and translocation was evaluated in terms of biological factors. In addition, plant enrichment factor was calculated. According to the results, plant foliage was not enriched through soil, which indicates absorption from the air, with both species acting as excluders of Cu, Pb, Zn and Mn. Leaves were more enriched with all the metals than needles, indicating a better response of birch to airborne pollution than spruce. Cluster analysis showed different level of pollution at the sites, while correlations between Cu and Pb obtained by Principal Component Analysis indicated their anthropogenic origin. Regarding previously published results, beside birch leaves, pine needles (which showed higher level of response to pollution compared to linden leaves) could be applied in air biomonitoring surveys near copper smelters.  相似文献   

3.
The effects on the growth of tomato seedlings and cadmium accumulation of earthworm mucus and a solution of amino acids matching those in earthworm mucus was studied through a hydroponic experiment. The experiment included four treatments: 5 mg Cd L−1 (CC), 5 mg Cd L−1 + 100 mL L−1 earthworm mucus (CE), 5 mg Cd L−1 + 100 mL L−1 amino acids solution (CA) and the control (CK). Results showed that, compared with CC treatment, either earthworm mucus or amino acids significantly increased tomato seedling growth and Cd accumulation but the increase was much higher in the CE treatment compared with the CA treatment. This may be due to earthworm mucus and amino acids significantly increasing the chlorophyll content, antioxidative enzyme activities, and essential microelement uptake and transport in the tomato seedlings. The much greater increase in the effect of earthworm mucus compared with amino acid treatments may be due to IAA-like substances in earthworm mucus.  相似文献   

4.
Environmental Science and Pollution Research - In bioaccumulation studies, sample devitalization through acid washing or oven drying is commonly applied to enhance the element accumulation...  相似文献   

5.
Effects of emissions, from a new aluminium works, on previously unpolluted assemblages of corticolous lichens, are described. Injury symptoms included chlorosis, red colorations, necrosis and weakening of attachment of thalli to the bark substratum, resulting in reductions in % cover. Before emissions commenced in 1970, lichens contained <10microg fluoride (F(-)) g(-1) dry weight. Where concentrations in annually monitored samples of Ramalina reached >100microg F(-1) g(-1), within 4 km downwind of the works, severe injury occurred with >75% losses of cover of some species. At increasing distances, injury, and F(-) concentrations, decreased. The lichen flora was almost eliminated within 1 km of the works: after 15 years' operation, 37 species are absent within 650 m, but at least 43 survive at 900 m. A range of sensitivity was shown between, and within, morphological types. Fructicose (shrubby) lichens contained >600microg F(-1) g(-1) after 4 years and were the first, and most severely, affected (<1% cover surviving by 1975). Most foliose (leaf-like) species were sensitive (88% losses by 1977), but some were more tolerant, containing >400microg F(-1) g(-1) after 10 years. Crustose (crust-like) lichens were affected least, some growing markedly to occupy the space formed following elimination of more intolerant species. Since 1978, in response to decreasing emissions, there has been a recovery of some fruticose and foliose species in less-exposed locations.  相似文献   

6.
Ambient airborne particulate matter (PM) in southwestern North America consists of naturally derived desert dust, plus anthropogenic inputs from several sources. Epiphytic lichens (Usnea sp.) in this region are a useful biomonitor for the airborne PM because they derive nutrients and moisture largely from incorporated atmospheric aerosols, and not by absorption from the host tree limb from which they are suspended. Using a broad-based sampling strategy from southern Chihuahua, Mexico, to northern New Mexico, USA, we show that select elemental abundance ratios and lead isotopes from epiphytic lichens are useful for distinguishing between sources of airborne PM, and for gauging anthropogenic inputs into desert ecosystems. Abundance patterns of the trace elements La, Nd, and Sm in the lichens suggest origination from continental crust, but rare earth elements display a pronounced enrichment relative to the major element Fe by a factor of about 5. This enrichment appears related to geologic weathering, aeolian transport, and grain-size biases toward trace-element-rich mineral grains in the arid setting. Using the metal Pb as an indicator of human inputs, epiphytic lichens typically show Pb enrichments by a factor of about 25–60 over typical upper crustal values. Regional-scale differences in Pb isotope ratios of these lichens relate to different pollutant sources in southwestern North America.  相似文献   

7.
Environmental Science and Pollution Research - The present study aims to assess the effect of four inorganic soil amendments, such as lime (CaCO3), red mud consisting of 75% hematite (Fe2O3),...  相似文献   

8.
Effects of fluoride (F(-)) emissions on previously unpolluted assemblages of saxicolous lichens, near an aluminium reduction works, are described. Lichens contained a mean 16 microg F(-) g(-1) dry weight in 1970 before emissions commenced. Subsequently, where annually monitored Ramalina contained >100microg g(-1) severe damage occurred, including loss of attachment to the rocky substratum. At sites within 1 km of the works well-exposed to emissions, fruticose (shrubby) lichens were eliminated, but in more sheltered locations 18% cover had survived by 1983. Some foliose (leaf-like) lichens tolerated >200 microg g(-1), while crustose (crust-like) species were least affected, 32% and 70% surviving, respectively. Concentrations of fluoride, and associated injury, decreased with increasing distance from the works. Fruticose and sensitive foliose species sustained 40-75% losses of cover up to 4 km NE, downwind of the works, where fluoride averaged 50-100 microg g(-1), but <40% losses were recorded in fruticose species up to 9 km, where concentrations averaged 35-50 microg. Saxicolous lichens were damaged less than corticolous species previously reported and, following decreased emissions, were also regrowing in sheltered and more distant locations by 1985.  相似文献   

9.
This article describes the influence of dissolved copper on the electrokinetic properties and transport of a copper oxychloride-based fungicide (COF) in porous media. The Zeta potential (ζ) of COF particles increases (viz. becomes less negative) with increasing concentration of Cu(2+) in the bulk solution. ζ decreases for COF when the electrolyte (NaNO(3)) concentration is raised from 1 to 10mM. This can be ascribed to ion correlation of Cu(2+) in the electrical double layer (EDL). COF transport tests in quartz sand columns showed the addition of Cu(2+) to the bulk solution to result in increased retention of the metal. Modelling particle deposition dynamics provided results consistent with kinetic attachment. Based on the effect of soluble Cu on colloid mobility, the transport of particulate and soluble forms of copper is coupled via the chemistry of pore water and colloid interactions. Mutual effects between cations and colloids should thus be considered when determining the environmental fate of particulate and soluble forms of copper in soil and groundwater (especially at copper-contaminated sites).  相似文献   

10.
The Canoparmelia texana epiphytic lichenized fungi was used to monitor atmospheric pollution in the S?o Paulo metropolitan region, SP, Brazil. The cluster analysis applied to the element concentration values confirmed the site groups of different levels of pollution due to industrial and vehicular emissions. In the distribution maps of element concentrations, higher concentrations of Ba and Mn were observed in the vicinity of industries and of a petrochemical complex. The highest concentration of Co found in lichens from the S?o Miguel Paulista site is due to the emissions from a metallurgical processing plant that produces this element. For Br and Zn, the highest concentrations could be associated both to vehicular and industrial emissions. Exploratory analyses revealed that the accumulation of toxic elements in C. texana may be of use in evaluating the human risk of cardiopulmonary mortality due to prolonged exposure to ambient levels of air pollution.  相似文献   

11.
12.
Cogun HY  Kargin F 《Chemosphere》2004,55(2):277-282
In the present study, effect of pH on the mortality and accumulation of copper in various tissue and organs of Oreochromis niloticus were tested at varying concentrations of copper in the medium and over different periods of time. Experimental animals were exposed to pH 5.5, 7.8 and 9.5 and 0.1, 0.5, 1.0 and 5.0 ppm copper over periods of 7, 15 and 30 days in liver, gills and muscle were determined using atomic absorption spectrophotometric techniques. The rate of mortality at 1.0 and 5.0 ppm Cu was 100% after 7 days of exposure at pH 5.5 while at 5.0 ppm Cu was 66% after 30 days of exposure at pH 7.8. No mortality was observed in any of the copper concentrations tested at pH 9.5. In all pH levels, tissue accumulation of copper increased with increasing concentrations of copper in the medium at a given exposure period. In all pH values tested, highest levels of copper were found in the liver of O. niloticus, followed by the gills and muscle tissues. Accumulation of copper in all tissues were higher at pH 5.5 compared with the other pH values in all the conditions tested.  相似文献   

13.
To enhance the reliability of the moss and lichen transplant technique for active biomonitoring of trace metals in urban environments, we evaluated the natural variability in the chemical composition of the (epilithic and epiphytic) moss Hypnum cupressiforme and the epiphytic lichen Pseudevernia furfuracea from two reference areas in NE Italy. Green shoots of epilithic mosses and lobes of epiphytic lichens from larch branches showed rather homogenous composition and were selected for the exposure in nylon bags. As different physico-chemical pre-treatments are usually applied to selected cryptogamic material before its exposure, we also evaluated the effects of oven-drying at 120 degrees C for 24h, washing in 1N HNO3 solution, and in 0.5% NH4 oxalate solution at 85 degrees C for 15 h on the chemical composition and morphology of water-washed moss shoots and lichen lobes. Pre-treatments remarkably changed the chemical composition of selected materials but not their surface morphology.  相似文献   

14.
This study investigated the influence of angular exposure and distance from vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements in a town of central Italy. An Index of Lichen Diversity (ILD) was calculated on the street-facing and the opposite side of road-lining trees and in a urban park 250 m away, and the content of selected trace elements (Al, Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, and Zn) was determined in samples of the lichen Punctelia borreri (Sm.) Krog growing on tree bark, both on the exposed and opposite sides. ILD increases with distance from traffic emissions. However, at the site with vehicle traffic, non-nitrophilous lichens decreased while nitrophilous ones increased. The concentration of the traffic-related elements Ba, Cr, Cu, Mn, Sb, and Zn accumulated in thalli of P. borreri was higher on roadside trees than in trees from the urban park. ILD was not affected by the angular exposure to the road and the bioaccumulation of traffic-related elements was similar in lichens from the side of the bole exposed to traffic emissions and particulate resuspension and from the opposite side. The angular exposure in respect to the traffic source does not influence trace element accumulation. These results are important when using lichens for biomonitoring purposes, both for planning future studies and for the reliability of the interpretation of past surveys that do not report information about the angular exposure of the collected lichen material.  相似文献   

15.
Zhang YF  He LY  Chen ZJ  Wang QY  Qian M  Sheng XF 《Chemosphere》2011,83(1):57-62
One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) comprise an important group of air pollutants, with three-ring components (PAH-3) often dominating. Spatiotemporal variation in atmospheric PAH-3 can be analyzed by biomonitoring but high vapour pressure and low octanol-air-partitioning of PAH-3 cause dynamic accumulation on plant surfaces. This study for the first time shows that PAH-3 exhibit systematic accumulation trends on pine needles of 3-48 months of exposure time at six sites in Germany. Correlation of needle exposure time with PAH-3 concentration was r2 = 0.83 for phenanthrene and methylphenanthrenes, r2 = 0.77 for cyclopenta[def]phenanthrene, r2 = 0.60 for dibenzothiophene, r2 = 0.57 for dimethylphenanthrenes and r2 = 0.32 for retene. Variations in PAH-3 for summer and winter collected needles emphasize vegetation-air-partitioning influence on cumulative PAH-3 loads. PAH-3 ratios calculated for needle cohorts indicate persistence of original PAH patterns thus demonstrating the source-diagnostic potential of pine needle biomonitoring, which is utilized in part II of this study where spatial distribution of PAH-3 is investigated and related to emission sources.  相似文献   

17.
Usnic acid controls the acidity tolerance of lichens   总被引:2,自引:0,他引:2  
The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pKa1 value of usnic acid of 4.4. Below this optimum pH, dissolved SO2 reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH < pKa1.  相似文献   

18.
The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan–clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k 1, for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu2+ ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.  相似文献   

19.
Temporal and spatial variations in concentrations of particle-associated polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives (nitro-PAHs and oxy-PAHs) were investigated to assess the influence of secondary formation on atmospheric occurrences of oxy-PAHs associated with particulate matter in downtown Tokyo, Japan. The daily variation in concentration of 1,8-naphthalic anhydride (1,8-NA) in summer 2007 was similar to that for 2-nitrofluoranthene (2-NF), a representative secondary formed nitro-PAH, while the variation for benzanthrone (BA) was similar to PAHs. In addition, the concentrations of polycyclic aromatic compounds (PACs) associated with airborne particulate matter decreased in the order of PAHs > BA > 9-fluorenone (9-FO) or 9,10-anthraquinone (9,10-AQ) > 1,8-NA with an increase in distance from the roadside, whereas 2-NF was constant. These results suggest that a considerable fraction of some oxy-PAHs such as 1,8-NA associated with airborne particulate matter in downtown Tokyo originates from atmospheric secondary formation.  相似文献   

20.
A glasshouse study of the coastal shrub Limoniastrum monopetalum was carried out to evaluate its tolerance and capacity to accumulate copper. We investigate the effects of Cu from 0 to 60 mmol l?1 on the growth, photosynthetic apparatus, and nutrient uptake of L. monopetalum, by measuring gas exchange, chlorophyll fluorescence parameters, photosynthetic pigments, and total copper, nitrogen, phosphorus, sulfur, calcium, and magnesium content in the plant tissues. Although L. monopetalum did not survive at 60 mmol l?1 Cu, the species demonstrated a high tolerance to Cu-induced stress, since all plants survived external Cu concentrations of up to 35 mmol l?1 and displayed similar growth in the Cu-enriched medium as in the control treatment of up to the external level of 15 mmol Cu l?1 (1,000 mg Cu l?1). The reduced growth registered in plants exposed to 35 mmol Cu l?1 can be attributed to reduced photosynthetic carbon assimilation associated with the adverse effect of the metal on the photochemical apparatus and a reduction in the absorption of essential nutrients. Copper tolerance was associated with the capacity of the plant to accumulate the metal in its roots and effectively prevent its translocation to photosynthetic tissues. L. monopetalum has the characteristics of a Cu-excluder plant and could be used in the revegetation of Cu-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号