首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Real-world emissions of a traffic fleet on a transit route in Austria were determined in the Tauerntunnel experiment in October 1997. The total number of vehicles and the average speed was nearly the same on both measuring days (465 vehicles 30 min−1 and 76 km h−1 on the workday, 477 and 78 km h−1 on Sunday). The average workday fleet contained 17.6% heavy-duty vehicles (HDV) and the average Sunday fleet 2.8% HDV resulting in up to four times higher emission rates per vehicle per km on the workday than on Sunday for most of the regulated components (CO2, CO, NOx, SO2, and particulate matter-PM10). Emission rates of NMVOC accounted for 200 mg vehicle−1 km−1 on both days. The relative contributions of light-duty vehicles (LDV) and HDV to the total emissions indicated that aldehydes, BTEX (benzene, toluene, ethylbenzene, xylenes), and alkanes are mainly produced by LDV, while HDV dominated emissions of CO, NOx, SO2, and PM10. Emissions of NOx caused by HDV were 16,100 mg vehicle−1 km−1 (as NO2). Produced by LDV they were much lower at 360 mg vehicle−1 km−1. Comparing the emission rates to the results that were obtained by the 1988 experiment at the same place significant changes in the emission levels of hydrocarbons and CO, which accounted 1997 to only 10% of the levels in 1988, were noticed. However, the decrease of PM has been modest leading to values of 80 and 60% of the levels in 1988 on the workday and on Sunday, respectively. Emission rates of NOx determined on the workday in 1997 were 3130 mg vehicle−1 km−1 and even higher than in 1988 (2630 mg vehicle−1 km−1), presumable due to the increase of the HD-traffic.  相似文献   

2.
Mercury (Hg) emissions from gasoline, diesel, and liquefied petroleum gas (LPG) vehicles were measured and speciated (particulate, oxidized, and elemental mercury). First, three different fuel types were analyzed for their original Hg contents; 571.1±4.5 ng L−1 for gasoline, 185.7±2.6 ng L−1 for diesel, and 1230.3±23.5 ng L−1 for LPG. All three vehicles were then tested at idling and driving modes. Hg in the exhaust gas was mostly in elemental form (Hg0), and no detectable levels of particulate (Hgp) or oxidized (Hg2+) mercury were measured. At idling modes, Hg concentrations in the exhaust gas of gasoline, diesel, and LPG vehicles were 1.5–9.1, 1.6–3.5, and 10.2–18.6 ng m−3, respectively. At driving modes, Hg concentrations were 3.8–16.8 ng m−3 (gasoline), 2.8–8.5 ng m−3 (diesel), and 20.0–26.9 ng m−3 (LPG). For all three vehicles, Hg concentrations at driving modes were higher than at idling modes. Furthermore, Hg emissions from LPG vehicle was highest of all three vehicle types tested, both at idling and driving modes, as expected from the fact that it had the highest original fuel Hg content.  相似文献   

3.
The quality of an emission calculation model based on emission factors measured on roller test stands and statistical traffic data was evaluated using source strengths and emission factors calculated from real-world exhaust gas concentration differences measured upwind and downwind of a motorway in southwest Germany. Gaseous and particulate emissions were taken into account. Detailed traffic census data were taken during the measurements. The results were compared with findings of similar studies.The main conclusion is the underestimation of CO and NOx source strengths by the model. On the average, it amounts to 23% in case of CO and 17% for NOx. The latter underestimation results from an undervaluation by 22% of NOx emission factors of heavy-duty vehicles (HDVs). There are significant differences between source strengths on working days and weekends because of the different traffic split between light-duty vehicles (LDVs) and HDVs. The mean emission factors of all vehicles from measurements are 1.08 g km−1 veh−1 for NOx and 2.62 g km−1 veh−1 for CO. The model calculations give 0.92 g km−1 veh−1 for NOx and 2.14 g km−1 veh−1 for CO.The source strengths of 21 non-methane hydrocarbon (NMHC) compounds quantified are underestimated by the model. The ratio between the measured and model-calculated emissions ranges from 1.3 to 2.1 for BTX and up to 21 for 16 other NMHCs. The reason for the differences is the insufficient knowledge of NMHC emissions of road traffic.Particulate matter emissions are dominated by ultra-fine particles in the 10–40 nm range. As far as aerosols larger than 29 nm are concerned, 1.80×1014 particles km−1 veh−1 are determined for all vehicles, 1.22×1014 particles km−1 veh−1 and an aerosol volume of 0.03 cm3 km−1 veh−1 are measured for LDVs, and for HDVs 7.79×1014 particles km−1 veh−1 and 0.41 cm3 km−1 veh−1 are calculated. Traffic-induced turbulence has been identified to have a decisive influence on exhaust gas dispersion near the source.  相似文献   

4.
Real-world vehicle emissions of carbonyls were determined in summer and winter of 2003 at the Shing Mun Tunnel, Hong Kong. Fifteen carbonyl species have been analyzed in this study. The total measured carbonyls emission factors ranged from 21.7 to 68.9 mg veh−1 km−1 among different measurement periods, with an average of 35.8±11.9 mg veh−1 km−1. Higher carbonyl emissions were found to be associated with a high proportion of diesel-fueled vehicles. Total measured carbonyl emissions from Diesel-fueled Vehicle (DV, 71.5 mg veh−1 km−1) were about 7 times higher than those from Non-Diesel-fueled Vehicle (NDV, 10 mg veh−1 km−1). The five carbonyls with the largest DV emission factor were, in decreasing order, formaldehyde (38.3 mg veh−1 km−1), acetaldehyde (11.4 mg veh−1 km−1), acetone (5.3 mg veh−1 km−1), crotonaldehyde (5.2 mg veh−1 km−1) and benzaldehyde (2.0 mg veh−1 km−1). These five carbonyl compounds together accounted for 87% of the sum of all DV carbonyl emission factors. For NDV, the five most abundant carbonyls in NDV emission at the tunnel were, in decreasing order, formaldehyde (3.5 mg veh−1 km−1), acetone (1.8 mg veh−1 km−1), methyl ethyl ketone (1.6 mg veh−1 km−1), m,p-tolualdehyde (1.0 mg veh−1 km−1) and acetaldehyde (mg veh−1 km−1). They accounted for 85% of the sum of all NDV carbonyl emission factors.  相似文献   

5.
The distribution of the density of foliage mass and area in forest canopies throughout Finland (60–70°N) were determined on the basis of the permanent sample plots used in the Finnish National Forest Inventory. These parameters were linked to the long-term monthly mean air temperatures for 1961–1990, which had been converted to hourly temperature and radiation values with the help of a weather simulator in order to calculate the spatial distribution of mean yearly emissions of monoterpene and isoprene over Finland. The mean total density of foliage mass in southern Finland (60°⩽latitude<65°N) was around 500 g m−2, equivalent to 4–5 m2 of total foliage area per m2 of land area. In northern Finland (65°⩽latitude<70°N), the maximum values remained below 200–300 g m−2, or 2–3 m2 m−2. The highest values were achieved in forests dominated by mature Norway spruces. The higher temperatures and longer growing season in southern Finland led to greater emissions than in the rest of the country. Total annual emissions of monoterpene were 1070 kg km−2 yr−1 in southern Finland and 460 kg km−2 yr−1 in the north, and those of isoprene from Norway spruce canopies 150 and 40 kg km−2 yr−1, respectively.  相似文献   

6.
A 3-year research project was established in 1999 to create numerical reference data for material emissions during the time of construction and during the first year. Seven buildings, representing the present construction practice in Finland, were investigated. Material emissions were measured by using the field and laboratory cell (FLEC) during the time of construction, in the newly finished, and in the 6- and 12-month-old buildings. The emission rates for volatile organic compounds (VOCs), formaldehyde, and ammonia were determined.The highest total VOCs (TVOC) emissions were measured in the newly finished buildings from the ceiling structure and from some of the PVC floor coverings. These emissions were up to 1300–2000 μg m−2 h−1. Individual VOCs with emission rates above 50 μg m−2 h−1 included 2-(2-butoxyethoxy) ethanol and its acetate, C4–C16-substituted alkylbenzenes, and xylenes. The mean TVOC emission decreased at least to the Finnish M1-class level (200 μg m−2 h−1) from all surfaces and in all the buildings in 6–12 months. The ammonia and formaldehyde emissions from the ceiling structure were 20–60 μg m−2 h−1 in the newly finished buildings and the M1-levels (30/50 μg m−2 h−1) were exceeded in some cases. These emissions even increased in some buildings during the follow-up period indicating the difference between emissions measured in the laboratory and on site from real structures. Reference values based on the means and 95th percentile are presented to be utilised in both quality control and while investigating indoor air quality problems which are suspected to be caused by a defect structure.  相似文献   

7.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

8.
In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m−2 h−1. An annual emission of ∼8.7×104 g of mercury to the atmosphere was calculated for the 586 km2 area. The bulk of the Hg released into the atmosphere from the district (∼89%) is from naturally enriched non-point sources and ∼11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m−2 h−1) by an order of magnitude.  相似文献   

9.
Depending on the operating conditions and the age of the converter, mean platinum emissions ranged from 7 to 123 ng m-3 corresponding to emission factors between 9 and 124 ng km-1. There were no statistically significant differences between the four converter brands tested. The data from new (12–90 ng km-1) and old catalytic converters (9–26 ng km-1) installed on a medium-powered gasoline engine (1.8 l 66 kW) showed a tendency towards decreasing platinum emission with increasing use. The platinum emissions increased with rising simulated speed and exhaust temperature. The lowest mean emission from new converters (12 ng km-1) was found at a constant speed of 80 km h-1, the highest (90 ng km-1) at 130 km h-1. Using the US72 or the US72-EUDC test cycles the emission factors were higher (37 or 19 ng km-1) than at 80 km h-1 indicating that additional mechanical or thermal impacts enhance the platinum abrasion at cycle conditions. After installing catalytic converters tested with the 1.8 l engine on a smaller engine (1.4 l 44 kW), the platinum emissions measured at the US72 cycle and a high-speed condition (140 km h-1) were only 9 and 22 ng km-1, respectively. Platinum is almost exclusively emitted bound to aluminum oxide particles where (depending on the driving conditions) 43–74% of these emitted particles had aerodynamic diameters >10 μm. The alveolar fraction (<3 μm) was between 11 and 26% (1.8 l engine) and between 21 and 36% (1.4 l engine). If at all, soluble platinum is emitted in only very small quantities (⩽1%).  相似文献   

10.
The objective of this project was to characterize on-road aerosol on highways surrounding the Minneapolis area. Data were collected under varying on-road traffic conditions and in residential areas to determine the impact of highway traffic on air quality. The study was focused on determining on-road nanoparticle concentrations, and estimating fuel-specific and particle emissions km−1.On-road aerosol number concentrations ranged from 104 to 106 particles cm−3. The highest nanoparticle concentrations were associated with high-speed traffic. At high vehicular speeds engine load, exhaust temperature, and exhaust flow all increase resulting in higher emissions. Less variation was observed in particle volume, a surrogate measure of particle mass. Most of the particles added by the on-road fleet were below 50 nm in diameter. Particles in this size range may dominate particle number, but contribute little to particle volume or mass. Furthermore, particle number is strongly influenced by nucleation and coagulation, which have little or no effect on particle volume. Measurements made in heavy traffic, speeds<32 km h−1, produced lower number concentrations and larger particles.Number concentrations measured in residential areas, 10–20 m from the highway, were considerably lower than on-road concentrations, but the size distributions were similar to on-road aerosol with high concentrations of very small (<20 nm) particles. Much lower number concentrations and larger particles were observed in residential areas located 500–700 m from the highway.Estimated emissions of total particle number larger than 3 nm ranged from 1.9 to 9.9×1014 particles km−1 and 2.2–11×1015 particles (kg fuel)−1 for a gasoline-dominated vehicle fleet.  相似文献   

11.
It is well known that mainstream (MS) and sidestream (SS) cigarette smoke contains a vast number of chemical substances. Previous studies have emphasized SS smoke rather than MS smoke to which smokers are exposed, and most have used chamber tests that have several disadvantages such as wall losses. Emissions from standard research cigarettes have been measured, but relatively few constituents have been reported, and only the 1R4F (low nicotine) cigarette type has been tested. This study provides a comprehensive characterization of total, MS and SS smoke emissions for the 1R5F (ultra low nicotine), 2R4F (low nicotine), and 1R3F (standard nicotine) research cigarettes research cigarettes, including emission factors for a number of toxic compounds (e.g., benzene) and tobacco smoke tracers (e.g., 2,5-dimethyl furan). Emissions of volatile organic compounds (VOCs) and particulate matter (PM) are quantified using a dynamic dilution emission measurement system that is shown to produce accurate, rapid and reproducible results for over 30 VOCs and PM. SS and MS emissions were accurately apportioned based on a mass balance of total emissions. As expected, SS emissions greatly exceeded MS emissions. The ultra low nicotine cigarette had lower emissions of most VOCs compared to low and standard nicotine cigarettes, which had similar emissions. Across the three types of cigarettes, emissions of benzene (296–535 μg cig−1), toluene (541–1003 μg cig−1), styrene (90–162 μg cig−1), 2-dimethyl furan (71–244 μg cig−1), naphthalene (15–18 μg cig−1) and other VOCs were generally comparable to or somewhat higher than literature estimates using chamber tests.  相似文献   

12.
Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg−1 (of dry wood burned)), carbon monoxide (CO) (120 g kg−1) and fine particle mass (PM1) (2.7 g kg−1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9–9 g kg−1 TVOC, 28–68 g kg−1 CO and 0.6–1.6 g kg−1 PM1. The emission of 12 PAHs (PAH12) from the sauna stove was 164 mg kg−1 and consisted mainly of PAHs with four benzene rings in their structure. PAH12 emission from other appliances was, on average, 21 mg kg−1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.  相似文献   

13.
We determined hourly emissions of isoprene, monoterpenes and sesquiterpenes from Siberian larch, one of the major tree species in Siberian forests. Summer volatile organic compounds (VOCs) emission from Siberian larch consisted mainly of monoterpenes (about 90%). The monoterpene emission spectrum remained constant during the measurement period, almost half was sabinene and other major monoterpenes were Δ3-carene, β- and α-pinene. During spring and summer, about 10% of the VOCs were sesquiterpenes, mainly α-farnesene. The sesquiterpene emissions declined to 3% in the fall. Isoprene, 2-methyl-3-buten-2-ol (MBO) and 1,8-cineole contributed to less than 3% of the VOC emission during the whole period. The diurnal variation of the emissions could be explained using a temperature-dependent parameterization. Emission potentials normalized to 30 °C were 5.2–21 μg gdw−1 h−1 (using β-value of 0.09 °C−1) for monoterpenes and 0.4–1.8 μg gdw−1 h−1 (using β-value of 0.143 °C−1, mean of determined values) for sesquiterpenes. Normalized monoterpene emission potentials were highest in late summer and elevated again in late fall. Sesquiterpene emission potentials were also highest in late summer, but decreased towards fall.  相似文献   

14.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

15.
The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m−2 s−1 PAR), low emitting species (Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g−1 dw h−1, a medium emitter (Pinus pinea) emitted between 5 and 10 μg (C) g−1 dw h−1 and high emitters (Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g−1 dw h−1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.  相似文献   

16.
The objective of the study was to quantify the concentration and emission levels of sulfuric odorous compounds emitted from pig-feeding operations. Five types of pig-housing rooms were studied: gestation, farrowing, nursery, growing and fattening rooms. The concentration range of sulfuric odorous compounds in these pig-housing rooms were 30–200 ppb for hydrogen sulfide (H2S), 2.5–20 ppb for methyl mercaptan (CH3SH), 1.5–12 ppb for dimethyl sulfide (DMS; CH3SCH3) and 0.5–7 ppb for dimethyl disulfide (DMDS; CH3S2CH3), respectively. The emission rates of H2S, CH3SH, DMS and DMDS were estimated by multiplying the average concentration (mg m−3) measured near the air outlet by the mean ventilation rate (m3 h−1) and expressed either per area (mg m−2 h−1) or animal unit (AU; liveweight of the pig, 500 kg) (mg pig−1 h−1). As a result, the emission rates of H2S, CH3SH, DMS and DMDS in the pig-housing rooms were 14–64, 0.8–7.3, 0.4–3.4 and 0.2–1.9 mg m−2 h−1, respectively, based on pig's activity space and 310–723, 18–80, 9–39 and 5–22 mg AU−1 h−1, respectively, based on pig's liveweight, which indicates that their emission rates were similar, whether based upon the pig's activity space or liveweight. In conclusion, the concentrations and emission rates of H2S were highest in the fattening room followed by the growing, nursery, farrowing and gestation rooms whereas those of CH3SH, DMS and DMDS concentrations were largest in the growing room followed by the nursery, gestation and farrowing rooms.  相似文献   

17.
《Chemosphere》2013,90(11):1414-1418
Nano-MgO is a good bactericide but with strong alkalinity in water due to its rapid hydrolysis. To control its hydrolysis rate and keep its bactericidal properties, we synthesized nano-MgO microspheres using chitosan–alginate system in this study. The synthesized nano-MgO release-controlled microspheres (nMgO-RCM) were with 0.98–1.20 mm of particle sizes. Also, their embedding ratio and loading percentage was 63.52% and 12.27%, respectively. Based on the characterization results, nano-MgO was only observed on surface of the nMgO-RCM. Its release rate from the nMgO-RCM could be controlled by the chitosan–alginate system, and the observed rate constant (kobs) increased from 0.0289 h−1 to 0.0358 h−1 with the increment of the dosage from 10 mg L−1 to 80 mg L−1. Furthermore, the nMgO-RCM could maintain pH value lower than 8.5 and colony counts less than 20 CFU mL−1 for at least 120 h.  相似文献   

18.
Benzene, toluene, sulphur dioxide, ozone and nitrogen dioxide were measured at a mean level of 13.5 m above ground in a narrow, four-lane street canyon (height 30 m, width 20 m) in Thessaloniki, Greece during the period January–July 1997 by means of a commercial differential optical absorption spectrometer (OPSIS DOAS). Primary pollutant levels were found to be 2.5–4.4 times higher during the cold part of the year than during the warm part of the year, the winter/summer ratio increasing with the reaction rate constant with OH for each of the measured species. Ozone, on the other hand, exhibited a winter/summer ratio of 0.36. NO2 originates from both primary and secondary sources; its winter/summer concentration ratio of 1.4 lies, therefore, between those of primary pollutants and ozone. Pollution levels were influenced considerably by wind speed, while for the street canyon under study wind direction did not influence pollutant levels considerably. While primary pollution was found to decrease with increasing wind speed, ozone increased. Benzene mean levels during the study period were around 6 ppb and hence much higher than the EU annual limit value of 5 μg m−3 (1.44 ppb at STP). Toluene mean levels were around 14 ppb and hence also several times above the WHO recommendation of 2 ppb for 24 h. The apportionment of traffic emissions in four time zones used in most inventories in urban airshed models was tested using benzene and toluene measurements at low (<1 m s−1) wind speeds. The agreement between model emissions and calculated emissions apportionment into the four time zones was good, except for Zone D (23:00–1:59), where model inventory emissions were somewhat too low.  相似文献   

19.
This paper examines the inter-suburb dispersion of particulate air pollution in Christchurch, New Zealand, during a wintertime particulate pollution episode. The dispersion is simulated using the RAMS/CALMET/CALPUFF modelling system, with data from a detailed emissions inventory of home heating, motor vehicles and industry. During the period 27 July–1 August 1995, peak 1 h and 24 h PM10 concentrations of 368 and 107 μg m−3, respectively, were observed. Peak concentrations occurred at night, when particulate emissions from wood- and coal-burning domestic heating appliances were at a maximum and emitted into a stable boundary layer. The model is generally able to reproduce the observed PM10 time series recorded at surface monitors located throughout the urban area. For this simulation, the fractional gross error ranges between 0.69 and 0.99, and the fractional bias ranges between −0.17 and 0.30. Strong horizontal concentration gradients of 100 μg m−3 km−1, both in the observational record and model predictions, are apparent. Three emission reduction options, designed to reduce the severity of particulate pollution episodes in Christchurch, are simulated. When both domestic open-hearth fires and all coal burning are removed, the 24 h average peak concentration is reduced by 55%. The number of guideline exceedences of PM10 in the modelled period is reduced from five to one. Removing open-hearth fires results in 42% reduction in PM10 concentration, resulting in three exceedences of the guideline, and removing coal-burning fires yields a 32% reduction in PM10, resulting in four exceedences of the guideline.  相似文献   

20.
Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, α-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species’ emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505 g ha−1 h−1 (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring; respectively). Emissions of isoprene ranged from 0.3 to 505 g ha−1 h−1 (macchia in Italy in late spring and autumn; and riverside in Spain in late spring; respectively) and α-pinene emissions ranged from 0.51 to 52.92 g ha−1 h−1 (garrigue in Spain in late spring; and forest in France in autumn; respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Genista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号