首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ion-induced binary H2SO4–H2O nucleation is an important mechanism of aerosol formation in the atmosphere. Ions are created in the atmosphere mainly by galactic cosmic rays. The importance of ion-induced nucleation is recognized in some of the observed nucleation events in the background atmosphere. However, the predictions of current ion–aerosol models are highly uncertain mostly due to the lack of detailed experimental information concerning the thermodynamics and kinetics of ion clustering reactions. Here we continue the report of results of our laboratory experiments on the formation and growth of positive and negative cluster ions in H2SO4–H2O vapours in the flow reactor started in Wilhelm et al. [2004. Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO4(H2SO4)a(H2O)w and H+ (H2SO4)a(H2O)w. Atmospheric Environment 38, 1735–1744] and Sorokin et al. [2006. Formation and growth of sulphuric acid–water cluster ions: experiments, modelling, and implications for ion-induced aerosol formation. Atmospheric Environment 40, 2030–2045]. The main attention is given to the definition of the concentration of gaseous sulphuric acid in experiment and also to some aspects of the kinetics of small cluster ions formation. The performed analysis has indicated a threshold concentration of gaseous sulphuric acid for binary homogeneous nucleation of at least about 1010 cm−3 at room temperature and low relative humidity.  相似文献   

2.
Conductometry was used to study the kinetics of the oxidation of hydrogen sulfite, HSO3, by hydrogen peroxide in aqueous non-buffered solution at the low concentration level of 10−5–10−6 M, typically found in cloud water. The kinetic data confirm that the rate law reported for the pH range 3–6 at higher concentration levels, rate=kH·[H+]·[HSO3]·[H2O2], is valid at the low concentration level and at low ionic strength Ic. At 298 K and Ic=1.5×10−4 M, third-order rate constant kH was found to be kH=(9.1±0.5)×107 M−2 s−1. The temperature dependence of kH led to an activation energy of Ea=29.7±0.9 kJ mol−1. The effect of the ionic strength (adjusted with NaCl) on rate constant kH was studied in the range Ic=2×10−4–5.0 M at pH=4.5–5.2 by conductometry and stopped-flow spectrophotometry. The dependence of kH on Ic can be described with a semi-empirical relationship, which is useful for the purpose of comparison and extrapolation. The kinetic data obtained are critically compared with those reported earlier.  相似文献   

3.
Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C6H6), toluene (methylbenzene, C7H8), the C8H10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C9H12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C10H14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3–20.8 μg m−3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS).Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m−3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10−3 g s−1 m−2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher.Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg gice−1 (toluene, ethylbenzene, xylenes) and 125 pg gice−1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg gice−1 at gas concentrations of 10.3–10.7 μg m−3 calculated at 295 K. Uptake coefficients (K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of Gibbs energy (ΔG) were between −4.5 and 2.4 kJ mol−1 and decreased as temperatures were lowered. From the uptake experiments, the uptake enthalpy (ΔH) could be determined between −70.6 and −33.9 kJ mol−1. The uptake entropy (ΔS) was between −281.3 and −126.8 J mol−1 K−1. Values of ΔH and ΔS were rather similar for 4-ethlytoluene, 1,3,5-TMB and tert.-butylbenzene, whereas 1,2,3-TMB showed much higher values.  相似文献   

4.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

5.
Annual volume-weighted mean (VWM) concentrations in rainwater collected at La Castanya (LC, Montseny Mountains, NE Spain) were analysed from 1983 to 2000 to study the temporal trends in precipitation chemistry, and the causes behind the changes. A significant positive correlation was found between annual rainwater SO42− concentrations at LC and Spanish SO2 emissions (r=0.73, P=0.0008) both decreasing remarkably during this period. Rainwater alkalinity increased during the period, shifting from negative values at the beginning (VWM in the 5 initial years=−2.7 μeq l−1) to alkaline values in recent years (VWM in the 5 final years=18.0 μeq l−1). Stepwise regression analysis indicated that 88% of the variation of alkalinity could be accounted for by the variability of non-marine Ca2+ and non-marine SO42−, with a more prominent dependence on Ca2+.Rains of African provenance were highly enriched in alkalinity and Ca2+, but no significant increases in their occurrence were found for the study period. Because of the reported higher dust updraft in northern Africa during years of high North Atlantic Oscillation (NAO) index, we also explored the relationship between rainwater variables associated with an African provenance and NAO. Annual precipitation was inversely related to NAO (r=−0.61, P=0.007). The annual wet deposition of African dust-related elements showed no correlation with NAO, probably because wet deposition of these elements depends on two factors (precipitation and dust updraft) which have opposite behaviour with respect to NAO. We hypothesise that dry deposition of African dust during dry spells (not sampled in this study) might be higher during high NAO-index years.  相似文献   

6.
The concentrations of PM2.5−10, PM2.5 and associated water-soluble inorganic species (WSIS) were determined in a coastal site of the metropolitan region of Rio de Janeiro, Southeastern Brazil, from October 1998 to September 1999 (n=50). Samples were dissolved in water and analyzed for major inorganic ions. The mean (± standard deviation; median) concentrations of PM2.5−10 and PM2.5 were, respectively, 26 (± 16; 21) μg m−3 and 17 (± 13; 14) μg m−3. Their mean concentrations were 1.7–1.8 times higher in dry season (May–October) than in rainy season (November–April). The WSIS comprised, respectively, 34% and 28% of the PM2.5−10 and PM2.5 masses. Chloride, Na+ and Mg2+ were the predominant ions in PM2.5−10, indicating a significant influence of sea-salt aerosols. In PM2.5, SO42− (∼97% nss-SO42−) and NH4+ were the most abundant ions and their equivalent concentration ratio (SO42−/NH4+ ∼1.0) suggests that they were present as (NH4)2SO4 particles. The mean concentration of (NH4)2SO4 was 3.4 μg m−3. The mean equivalent PM2.5 NO3 concentration was eight times smaller than those of SO42− and NH4+. The PM2.5 NO3 concentration in dry season was three times higher than in rainy season, probably due to reaction of NaCl (sea salt) with HNO3 as a result of higher levels of NOy during the dry season and/or reduced volatilization of NH4NO3 due to lower wintertime temperature. Chloride depletion was observed in both size ranges, although more pronouncely in PM2.5.  相似文献   

7.
Marine background levels of non-sea-salt- (nss-) SO42− (5.0–9.7 neq m−3), NH4+ (2.1–4.4 neq m−3) and elemental carbon (EC) (40–80 ngC m−3) in aerosol samples were measured over the equatorial and South Pacific during a cruise by the R/V Hakuho-maru from November 2001 to March 2002. High concentrations of nss-SO42− (47–94 neq m−3), NH4+ (35–94 neq m−3) and EC (130–460 ngC m−3) were found in the western North Pacific near the coast of the Asian continent under the influence of the Asian winter monsoon. Particle size distributions of ionic components showed that the equivalent concentrations of nss-SO42− were balanced with those of NH4+ in the size range of 0.06<D<0.22 μm, whereas the concentration ratios of NH4+ to nss-SO42− in the size range of D>0.22 μm were decreased with increase in particle size. We estimated the source contributions of those aerosol components in the marine background air over the equatorial and South Pacific. Biomass burning accounted for the large fraction (80–98% in weight) of EC and the minor fraction (2–4% in weight) of nss-SO42−. Marine biogenic source accounted for several tens percents of NH4+ and nss-SO42−. In the accumulation mode, 70% of particle number existed in the size range of 0.1<D<0.2 μm. In the size rage of 0.06<D<0.22 μm, the dominant aerosol component of (NH4)2SO4 would be mainly derived from the marine biogenic sources.  相似文献   

8.
Potassium carbonate sulfation plates, monitored monthly for 11 years from 48 sites in 11 cities in Gansu Province, China, provide a crude estimate of cumulative SO2 dry depositions. Measured SO2 dry deposition rates were 1.6–472 mg m−2 day−1 and had seasonal variations with maxima in winter and minima mainly during summer as a result of higher winter and lower summer SO2 concentrations. The 11-year monthly average SO2 dry deposition rates are 23.2–248.97 and 11.7–175.6 mg m−2 day−1 in the eleven cities in winter and summer, respectively. A monthly average SO2 deposition velocity was also estimated from 0.06 to 9.72 cm s−2 in the 11 cities studied with a 11-year average maximum value of about 1.1–2.7 cm s−2 in April and July and a 11-year average minimum value of about 0.2–1.0 cm s−1 in January. The SO2 dry deposition velocity also exhibits an increasing with wind speed in basins of less than 500 mm annual precipitation. In contrast, due to influences of the relative humidity in valleys of more than 500 mm annual precipitation, it shows a decreasing trend with wind speed increasing.  相似文献   

9.
Real-world emissions of a traffic fleet on a transit route in Austria were determined in the Tauerntunnel experiment in October 1997. The total number of vehicles and the average speed was nearly the same on both measuring days (465 vehicles 30 min−1 and 76 km h−1 on the workday, 477 and 78 km h−1 on Sunday). The average workday fleet contained 17.6% heavy-duty vehicles (HDV) and the average Sunday fleet 2.8% HDV resulting in up to four times higher emission rates per vehicle per km on the workday than on Sunday for most of the regulated components (CO2, CO, NOx, SO2, and particulate matter-PM10). Emission rates of NMVOC accounted for 200 mg vehicle−1 km−1 on both days. The relative contributions of light-duty vehicles (LDV) and HDV to the total emissions indicated that aldehydes, BTEX (benzene, toluene, ethylbenzene, xylenes), and alkanes are mainly produced by LDV, while HDV dominated emissions of CO, NOx, SO2, and PM10. Emissions of NOx caused by HDV were 16,100 mg vehicle−1 km−1 (as NO2). Produced by LDV they were much lower at 360 mg vehicle−1 km−1. Comparing the emission rates to the results that were obtained by the 1988 experiment at the same place significant changes in the emission levels of hydrocarbons and CO, which accounted 1997 to only 10% of the levels in 1988, were noticed. However, the decrease of PM has been modest leading to values of 80 and 60% of the levels in 1988 on the workday and on Sunday, respectively. Emission rates of NOx determined on the workday in 1997 were 3130 mg vehicle−1 km−1 and even higher than in 1988 (2630 mg vehicle−1 km−1), presumable due to the increase of the HD-traffic.  相似文献   

10.
A new algorithm has been derived for trajectory models to determine the transfer coefficient of each source along or adjacent to a trajectory and to calculate the concentrations of SO2, NOx, sulfate, nitrate, fine particulate matter (PM) and coarse PM at a receptor. The transfer coefficient tf (s m−1) is defined to be the ratio between the contributed concentration ΔC (μg m−3) to the receptor from a ground source and the emission rate of the source q (μg m−2 s−1) at a grid, i.e. tf≡ΔC/q. The model is developed by combining with a backward trajectory scheme and a circuit-type's parameterization. First, the transfer coefficients of grids along or adjacent a back-trajectory are calculated. Then, the contributed concentration of each emission grid is determined by multiplying its emission rate with the transfer coefficient of the grid. Finally, the concentration at the receptor is determined by the summation of all the contributed concentrations within the domain of simulation.  相似文献   

11.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

12.
The annular denuder system (ADS) was used to characterize seasonal variations of acidic air pollutants in Seoul, South Korea. Fifty- four 24 h samples were collected over four seasons from October 1996 to September 1997. The annual mean concentrations of HNO3, HNO2, SO2 and NH3 in the gas phase were 1.09, 4.51, 17.3 and 4.34 μg m-3, respectively. The annual mean concentrations of PM2.5(dp≤2.5 μm in aerodynamic diameter, 50% cutoff), SO2-4, NO-3 and NH+4 in the particulate phase were 56.9, 8.70, 5.97 and 4.19 μg m-3, respectively. All chemical species monitored from this study showed statistical seasonal variations. Nitric acid (HNO3) and ammonia (NH3) exhibited substantially higher concentrations during the summer, while nitrous acid (HNO2) and sulfur dioxide(SO2) were higher during the winter. Concentrations of PM2.5, SO2-4, NO-3 and NH+4 in the particulate phase were higher during the winter months. SO2-4, NO-3 and NH+4 accounted for 26–38% of PM2.5. High correlations were found among PM2.5, SO2-4, NO-3 and NH+4. The mean H+ concentration measured only in the fall was 5.19 nmole m-3.  相似文献   

13.
Studies on the effect of NOx on zinc corrosion are scarce and their results are variable and at times seemingly contradictory. This paper reports laboratory tests involving the dry deposition on zinc surfaces of 800 μg m−3 NO2, alone and in combination with 800 μg m−3 SO2, at temperatures of 35 and 25 °C and relative humidities of 90% and 70%. From the gravimetric results obtained and from the characterisation of the corrosion products by optical microscopy, scanning electron microscopy (SEM/EDX), grazing incidence X-ray diffraction (GIXD) and X-ray photoelectron spectroscopy (XPS), it has been verified that the corrosive action of NO2 alone is negligible compared with SO2. However, an accelerating effect has been observed when NO2 acts in conjunction with SO2 at 25 °C and 90% RH. At 35 °C and 90% RH, the accelerating effect is smaller, and at low relative humidities (70%), the synergistic effect is only slight, which suggests it may be favoured by the presence of moisture. In those cases where an accelerating effect has been observed, a greater proportion of sulphate ions has been found in the corrosion products, and nitrogen compounds have not been detected, indicating that NO2 participates indirectly as a catalyst of the oxidation of SO2 to sulphate.  相似文献   

14.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

15.
Agricultural waste burning is a widespread practice throughout the world but there is little information about its pollutant impact. This paper deals with a preliminary study of the pollution observed in Vitoria (Northern Spain) caused by cereal waste burning. The mean hourly flux of pollutants produced by cereal waste burning fires can reach values of 1.4 kt of CO2, 13 t of TPM and 3 t of NOx in the area around Vitoria. Measurements obtained in the area of emission and inside fire plumes show high ratios (NO2/NOx) indicating that nitrogen oxides emitted by the source undergo a rapid transformation in the same area of emission. Results relating to aerosol composition collected in Vitoria during burning periods show an increase in the concentration of K+, NO3 and Cl ions, that are inter-correlated. The modification of the ionic composition of aerosols also affects the chemistry of the rain collected in Vitoria. During the burning period, it is particularly noticeable that anthropogenic pollution (usually identifiable by the correlation between SO42− and NO3 concentrations) disappears, indicating the existence of an independent source of NO3 not linked to the SO42− source. Similar results were deduced studying BAPMON data collected in Spain during cereal waste burning. Finally, we note that ozone concentration measured at Vitoria is not affected by the pollution generated by the burning fires.  相似文献   

16.
The kinetics of two structurally similar unsaturated alcohols, 3-butene-2-ol and 2-methyl-3-butene-2-ol (MBO232), with Cl atoms have been investigated for the first time, as a function of temperature using a relative method. As far as we know, the present work also provides the first value for 3-buten-2-ol. The coefficient at room temperature was also obtained for 2-propene-1-ol (allyl alcohol). The reactions were investigated using a 400 L Teflon reaction chamber coupled with gas chromatograph-coupled with flame-ionization detection (GC-FID) detection. The experiments were performed at atmospheric pressure and at temperatures between 256 and 298 K in air or nitrogen as the bath gas. The obtained kinetic data were used to derive the Arrhenius expressions, kMBO232=(2.83±2.50)×10−14 exp (2670±249)/T, k3-buten-2-ol=(0.65±1.60)×10−15 exp (3656±695)/T (in units of cm3 molecule−1 s−1). Finally, results and atmospheric implications are discussed and compared with the reactivity with OH and NO3 radicals.  相似文献   

17.
SO2 dry deposition was studied over short vegetation, in Portugal, by means of the concentration gradient method. The experimental study involved one first phase of long-term measurements carried out in a grassland and, subsequently, a second period of several 1997 intensive field campaigns performed in three places representing different climate and surface conditions. Temporal and spatial patterns of dry deposition parameters show that downward fluxes of SO2 are by some extent affected by surface processes. Median Rc varied from 140 s cm−1 to values around 200 s cm−1, in a wide range of environmental conditions. Stomatal uptake is an important sink when vegetation is biologically active, but its contribution is effectively low when compared with non-stomatal mechanisms, especially when the surface is wet. Under dry conditions Rc increases by a factor of two, but SO2 deposition rates then still are significant. The parameterisation of the surface resistance for SO2 proved to be difficult, but Vd derived with the Erisman parameterisation (Erisman et al., Atmos. Environ. 28 (16) (1994) 2595) compared best with measured values, at low time resolution scale and especially under moisture conditions.  相似文献   

18.
Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO2 ranging from 0.5 to above 40 μg S m−3. The main components in the airborne particles are (NH4)2SO4 and CaSO4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l−1 at the most rural site (LGS) to about 200 μeq l−1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l−1, while the total nitrogen concentration is between 30 and 150 μeq l−1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.  相似文献   

19.
Henry’s law constants H of formaldehyde and benzaldehyde were determined using a dynamic system based on the water/air equilibrium at the interface within the length of a microporous tube. The measurements were conducted over the range 273–293 K in (i) deionized water, (ii) 35 g L?1 solution of NaCl simulating seawater and (iii) two nitric acid solutions, i.e. 0.63 and 6.3 wt%.In pure water, the obtained data were used to derive the following Arrhenius expressions: ln H = (6423 ± 542)/T ? (13.4 ± 2.0) and ln H = (6258 ± 280)/T ? (17.5 ± 1.0) for formaldehyde and benzaldehyde, respectively. The H values, calculated at 293 K from Arrhenius expressions cited above were the following (in units of M atm?1): H = 5020 ± 1170 (formaldehyde), H = 47 ± 5 (benzaldehyde). The temperature dependence of H permits then to derive the solvation enthalpies for both compounds: ΔHsolv = ?(53.4 ± 4.5) kJ mol?1 and ΔHsolv = ?(52.0 ± 2.3) kJ mol?1 for formaldehyde and benzaldehyde, respectively.In 35 g L?1 salt solution, the H values were 27–66% and 12–21% lower than their respective determinations in deionized water, for formaldehyde and benzaldehyde respectively. The observed salt effect was used to estimate the following Setschenow coefficients at 293 K for 0.6 M NaCl: formaldehyde (0.21) and benzaldehyde (0.09).In 6.3 wt% nitric acid solution, H values of benzaldehyde were approximately 30% higher than those found in pure water although no significant influence was observed for formaldehyde.Finally, our experimental data were then used to estimate the fractions of formaldehyde and benzaldehyde in atmospheric aqueous phase and their derived atmospheric lifetimes.  相似文献   

20.
A study of concentrations of sulfur dioxide (SO2) and suspended particulate matter (SPM) has been performed in Delhi. The monthly and seasonal variations of concentrations and winds are analyzed. The monthly mean SO2 concentrations were in the range of 16.15–34.44 μg m−3 and showed regular seasonal variations with the highest concentrations in winter and lowest in monsoon season. On the other hand, the monthly mean SPM concentrations reached the highest (465.68 μg m−3) in November and the lowest (150.07 μg m−3) in August. It was observed that high SO2 concentrations were generally associated with the wind blowing from WNW–NW directions, and the high SPM concentrations were usually related to the wind blowing from W–NW directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号