首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.

Pseudomonas sp. Y-5, a strain with simultaneous nitrification and denitrification (SND) capacity, was isolated from the Wuhan Municipal Sewage Treatment Plant. This strain could rapidly remove high concentrations of inorganic nitrogen. Specifically, Pseudomonas sp. Y-5 removed 103 mg/L of NH4+-N in 24 h without nitrate or nitrite accumulation when NH4+-N was its sole nitrogen source. The NH4+-N removal efficiency (RE) was 97.26%, and the average removal rate (RR) was 4.30 mg/L/h. Strain Y-5 also removed NO3?-N and NO2?-N even in aerobic conditions, with average RRs of 4.39 and 4.23 mg/L/h, respectively, and REs of up to 99.34% and 95.81% within 24 h. When cultured in SND medium (SNDM-1), strain Y-5 achieved an NH4+-N RE of up to 97.80% and a total nitrogen (TN) RE of 93.01%, whereas NO3?-N was fully depleted in 48 h. Interestingly, high nitrite concentrations did not inhibit the nitrification capacity of Y-5 when grown in SNDM-2, the RE of NH4+-N and TN reached 96.29% and 94.26%, respectively, and nitrite was consumed completely. Strain Y-5 also adapted well to high concentrations of ammonia (~401.68 mg NH4+-N/L) or organic nitrogen (~315.12 mg TN/L). Our results suggested that Pseudomonas sp. Y-5 achieved efficient simultaneous nitrification and denitrification, thus demonstrating its potential applicability in the treatment of nitrogen-polluted wastewater.

  相似文献   

2.
土壤渗滤介质系统去除雨水径流污染物   总被引:2,自引:0,他引:2  
刘芳  侯立柱 《环境工程学报》2012,6(12):4294-4298
利用昆明当地的土壤在室内填装一个土柱渗滤系统,使用配水浓度模拟昆明市区雨水径流污染物浓度,进行去除雨水径流污染物的实验研究,考察系统对COD、TN、NH4+、NO3^-、NO2^-和TP的去除效果。实验结果表明,该土壤渗滤系统对COD平均去除率为82.04%,对TN的平均去除率为22.64%,对NH;平均去除率为94.26%,但是对NO3^-、NO2^-去除效果较差,对TP平均去除率为96.95%;另外,系统长期运行导致下渗速度降低,出水效果反而变好。  相似文献   

3.
以天然矿物质沸石、细砂及煤渣取代传统滤料构建复合基质生态床,表面种植景观植物,采用下向流-上向流运行方式修复北方景观水体。分别进行静态实验及不同循环速率下的动态实验,考察对水体污染物去除过程。结果表明,2种运行方式下对水体NH+4-N去除率都在85%以上,其中以1 h为循环周期的运行方式去除率达97%,较静态提高12.8%;TN去除率最高为84%;TP去除不稳定,过程缓慢。煤渣层对NH+4-N的去除效果差,硝化作用不彻底与反硝化作用的加强使下层出水NH+4-N 、NO-2-N及NO-3-N浓度均高于上层。提高循环速率有利于对氮的去除。  相似文献   

4.
The effects of phosphate (P) and zeolite (Z) -built detergents on leaching of N and P through sand columns simulating septic system drainfields were examined in laboratory columns. To simulate mound septic system drainfields, paired sets of columns were dosed intermittently with septic tank effluent from households using P- or Z-built detergent. Two other paired sets of columns were flooded with P- or Z-effluent to simulate new conventional septic system drainfields; after clogging mats or “crusts” developed at infiltration surface, the subsurfaces of the columns were aerated to simulate mature (crusted) conventional septic system drainfields. NO3 loading in leachate was 1.1 times higher and ortho-P loading was 4.3 times lower when columns were dosed with Z- than with P-effluent. Dosed columns removed P poorly; total phosphorus (TP) loading in leachate was 81 and 19 g m−2 yr−1 with P- and Z-effluent, respectively. In flooded columns 1.3, 2.0 and 1.8 times more NH4, organic nitrogen (ON) and total nitrogen (TN) respectively, were leached with Z- than with P-effluent; NO3 leaching was similar. Flooded columns removed P efficiently; TP leached through flooded systems was 2.5 and 1.4 g m−2 yr−1 with P- and Z effluent, respectively. Crusted columns fed Z-effluent leached 1.2, 2.6, 1.4 and 2.1 times more NH4, NO3, ON and TN, respectively, than those with P-effluent but 1.8 times less TP. Crusted columns removed P satisfactorily: 8.2 and 4.6 g m−2 yr−1 TP with P- and Z-effluent, respectively. The P-built detergent substantially improves the efficiency of N removal with satisfactory P removal in columns simulating conventional septic system drainfield. Simultaneous removal of N and P under flooded conditions might be explained by precipitation of struvite-type minerals. Dosed system drainfields were less efficient in removing N and P compared to flooded and crusted system drainfelds.  相似文献   

5.
Abstract

The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4 +; 20%), coarse nitrate (NO3 ?; 16%), fine NO3 + (5%), and coarse NH4 + (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4 + concentrations.  相似文献   

6.

Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4 +, NO3 ?, and NO2 ? nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4 +-N in a 1-day sample, which continued until 90 days. Some declines in NO3 ?N were found from 15 to 60 days. Along with this decline, significant increases in NO2 ?N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3 ?N and the decline in NH4 +NO2 ?-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4 +-N, NO2 ?-N and nitrate reductase activity and some adverse effects on NO3 ?N between 15 and 90 days.  相似文献   

7.
In order to discuss the dry deposition fluxes of atmospheric fixed nitrogen species, observations of aerosol chemistry including nitrate (NO3?) and ammonium (NH4+) were conducted at two islands, Rishiri Island and Sado Island, over the Sea of Japan. Although the atmospheric concentrations of particulate NH4+–N showed higher values than those of particulate NO3?–N at both sites, the dry deposition fluxes of the particulate NO3?–N were estimated to be higher than those of the particulate NH4+–N. This was caused by the difference of particle sizes between the particulate NO3? and NH4+; NH4+ was almost totally contained in fine particles (d < 2.5 μm) with smaller deposition velocity, whereas NO3? was mainly contained in coarse particles (d > 2.5 μm) with greater deposition velocity. Fine mode NO3? was strongly associated with fine mode sea-salt and mineral particles, of which higher concentrations shifted the size of particulate NO3? toward the fine mode range. This size shift would decrease the dry deposition flux of the fixed nitrogen species on coastal waters and accelerate atmospheric transport of them to the remote oceanic areas.  相似文献   

8.
To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotope ratios (δ15N) in tropical Indian aerosols (PM10) collected from Chennai (13.04°N; 80.17°E) on day- and night-time basis in winter and summer 2007. We found high δ15N values (+15.7 to +31.2‰) of aerosol N (0.3–3.8 μg m?3), in which NH4+ is the major species (78%) with lesser contribution from NO3? (6%). Based on the comparison of δ15N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ15N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH3 to NH4HSO4 and (NH4)2SO4 and the subsequent exchange reaction between NH3 and NH4+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.  相似文献   

9.
改进型波形潜流人工湿地处理猪场废水   总被引:1,自引:0,他引:1  
提出了一种改进型波形潜流人工湿地(improved wavy subsurface flow constructed wetland,IW-SFCW)并研究了该湿地系统在5个水力停留时间(hydraulic retention time,HRT)(2、3、4、6和8 d)下对猪场废水的处理效果。结果表明,该湿地系统对猪场废水中各污染物有较好的去除效果。在水力停留时间为4 d,进水COD、TN、NH4+-N和TP浓度分别为511、120、110和10 mg/L左右时,该湿地系统对COD、TN、NH4+-N和TP的去除率分别为86.0%、54.4%、70.1%和91.6%。此外,该湿地系统对废水中COD、TP的去除效率随水力停留时间的延长逐渐提高,在HRT=8 d时去除效果最好,去除率分别达到92.7%和96.8%;但对TN、NH4+-N的去除率却随水力停留时间的延长出现先上升后下降的趋势,在HRT=4 d时去除率最高,分别为54.4%和70.1%。  相似文献   

10.
采用移动床生物膜反应器(MBBR)处理配制模拟废水,实验结果表明,水力停留时间为6h、悬浮填料填充率为40%时,在不同C/N/P比率条件下,MBBR对COD、NH4+-N和TN去除性能好且稳定,平均去除率分别达到90%、94.8%和62.39%以上,而TP的去除率受C/N/P值影响较大,当C/N/P的比值为100/10/1.8时,平均去除率达到58.03%。一定的溶解氧(DO)质量浓度能保证反应器中COD、NH4-N高效稳定的去除,同时是TN和TP同时去除的重要影响因素,在MBBR中最佳DO值约为3mg/L。由于附着在悬浮填料生物膜内部存在厌氧、缺氧微环境条件,在反应器中存在少量的反硝化聚磷菌。  相似文献   

11.
向成功启动并稳定运行630 d后的UASB生物膜反应器系统连续添加有机物,分析其对厌氧氨氧化反应脱氮效果的影响,并进行氮素浓度负荷试验.在厌氧氨氧化反应器系统中连续投加有机COD(葡萄糖),系统运行稳定,有机COD(葡萄糖)存在对系统去除氮素能力影响不大,有机COD去除率达到92.0%,仅用23 d,在同一反应器系统中成功实现了厌氧氨氧化与反硝化协同作用脱氮.氮素浓度负荷试验阶段,进水氨氮(NH 4-N)、亚硝氮(NO-2-N)以及总氮(TN)浓度负荷分别从0.063 kg/(m3·d)和0.063 kg/(m3·d)和0.126 kg/(m3·d)提升到了0.239 kg/(m3·d)、0.315 kg/(m3·d)和0.554 kg/(m3·d),相应去除率分别为84.0%、93.0%和85.0%,厌氧氨氧化工艺的UASB生物膜反应器对氮素浓度负荷仍有很大提升空间.  相似文献   

12.
The aims of this study are to investigate whether and how the nitrogen form (nitrate (NO3 ) versus ammonium (NH4 +)) influences cadmium (Cd) uptake and translocation and subsequent Cd phytoextraction by the hyperaccumulator species Sedum plumbizincicola. Plants were grown hydroponically with N supplied as either NO3 or NH4 +. Short-term (36 h) Cd uptake and translocation were determined innovatively and quantitatively using a positron-emitting 107Cd tracer and positron-emitting tracer imaging system. The results show that the rates of Cd uptake by roots and transport to the shoots in the NO3 treatment were more rapid than in the NH4 + treatment. After uptake for 36 h, 5.6 (0.056 μM) and 29.0 % (0.290 μM) of total Cd in the solution was non-absorbable in the NO3 and NH4 + treatments, respectively. The local velocity of Cd transport was approximately 1.5-fold higher in roots (3.30 cm h?1) and 3.7-fold higher in shoots (10.10 cm h?1) of NO3 - than NH4 +-fed plants. Autoradiographic analysis of 109Cd reveals that NO3 nutrition enhanced Cd transportation from the main stem to branches and young leaves. Moreover, NO3 treatment increased Cd, Ca and K concentrations but inhibited Fe and P in the xylem sap. In a 21-day hydroponic culture, shoot biomass and Cd concentration were 1.51 and 2.63 times higher in NO3 - than in NH4 +-fed plants. We conclude that compared with NH4 +, NO3 promoted the major steps in the transport route followed by Cd from solution to shoots in S. plumbizincicola, namely its uptake by roots, xylem loading, root-to-shoot translocation in the xylem and uploading to the leaves. S. plumbizincicola prefers NO3 nutrition to NH4 + for Cd phytoextraction.  相似文献   

13.
Biological treatment of high-strength nitrogenous wastewater is challenging due to low growth rate of autotrophic nitrifiers. This study reports bioaugmentation of Thiosphaera pantotropha capable of simultaneously performing heterotrophic nitrification and aerobic denitrification (SND) in sequencing batch reactors (SBRs). SBRs fed with 1:1 organic-nitrogen (N) and NH4 +-N were started up with activated sludge and T. pantotropha by gradual increase in N concentration. Sludge bulking problems initially observed could be overcome through improved aeration and mixing and change in carbon source. N removal decreased with increase in initial nitrogen concentration, and only 50–60 % removal could be achieved at the highest N concentration of 1000 mg L?1 at 12-h cycle time. SND accounted for 28 % nitrogen loss. Reducing the settling time to 5–10 min and addition of divalent metal ions gradually improved the settling characteristics of sludge. Sludge aggregates of 0.05–0.2 mm diameter, much smaller than typical aerobic granules, were formed and progressive increase in settling velocity, specific gravity, Ca2+, Mg2+, protein, and polysaccharides was observed over time. Granulation facilitated total nitrogen (TN) removal at a constant rate over the entire 12-h cycle and thus increased TN removal up to 70 %. Concentrations of NO2 ?-N and NO3 ?-N were consistently low indicating effective denitrification. Nitrogen removal was possibly limited by urea hydrolysis/nitrification. Presence of T. pantotropha in the SBRs was confirmed through biochemical tests and 16S rDNA analysis.  相似文献   

14.
Chemical characterization to determine the organic and nitrogen fractions was performed on cloud water samples collected in a mountaintop site in Puerto Rico. Cloud water samples showed average concentrations of 1.09 mg L?1 of total organic carbon (TOC), of 0.85 mg L?1 for dissolved organic carbon (DOC) and of and 1.25 mg L?1 for total nitrogen (TN). Concentrations of organic nitrogen (ON) changed with the origin of the air mass. Changes in their concentrations were observed during periods under the influence of African dust (AD). The ON/TN ratios were 0.26 for the clean and 0.35 for the AD periods. Average concentrations of all these species were similar to those found in remote environments with no anthropogenic contribution. In the AD period, for cloud water the concentrations of TOC were 4 times higher and TN were 3 times higher than during periods of clean air masses associated with the trade winds. These results suggest that a significant fraction of TOC and TN in cloud and rainwater is associated to airborne particulate matter present in dust. Functional groups were identified using proton nuclear magnetic resonance (1H NMR) spectroscopy. This characterization led to the conclusion that water-soluble organic compounds in these samples are mainly aliphatic oxygenated compounds, with a small amount of aromatics. The ion chromatography results showed that the ionic species were predominantly of marine origin, for air masses with and without African dust influence, with cloud water concentrations of NO3? and NH4+ much lower than from polluted areas in the US. An increase of such species as SO42?, Cl?, Mg2+, K+ and Ca2+ was seen when air masses originated from northwest Africa. The changes in the chemical composition and physical properties of clouds associated with these different types of aerosol particles could affect on cloud formation and processes.  相似文献   

15.
This study investigates ammonium, nitrate, and sulfate (NH4+, NO3?, and SO42?) in size-resolved particles (particularly nano (PM0.01–0.056)/ultrafine (PM0.01–0.1)) and NOx/SO2 collected near a busy road and at a rural site. The average (mass) cumulative fraction of secondary inorganic aerosols (SO42?+NO3?+NH4+) in nano or ultrafine particles at the roadside was found to be three to four times that at the rural site. The above three secondary inorganic aerosol species were present in similar cumulative fractions in particles of size 1–18 μm at both sites; however, dissimilar fractions were observed for Cl?, Na+, and K+. The nitrogen ratios (NRs: NR = NO3??N/(NO3??N + NO2–N)), sulfur ratios (SRs: SR = SO42??S/(SO42??S + SO2–S)), dNR/DP (derivative of NR with respect to DP (particle diameter)), and dSR/DP (derivative of SR with respect to DP) at the roadside were higher than those at the rural site for nano/ultrafine particles. At both sites (particularly the roadside), the nanoparticles had significantly higher dNR/DP and dSR/DP values than differently sized particles, implying that NO3?/SO42? (from NO2/SO2 transformation or NO3?/SO42? deposition) were present on these particles.  相似文献   

16.
Atmospheric deposition is an important removal process of aerosol particles and gases from the atmosphere. To elucidate the relative contributions of wet and dry processes and in-cloud and below-cloud scavenging based on deposition amounts in winter at Mt. Tateyama, central Japan, we obtained daily samples (December, 2006–March, 2007) of size-segregated aerosol particles and precipitation at Senjyugahara (SJ; 475 m a.s.l.) and vertical samples of spring snow cover at Murododaira (MR, 2450 m a.s.l., 13 km distance from SJ) on the western flank of Mt. Tateyama. The NH4+ and nssSO42? in aerosols were mostly found in the fine fraction (<2 μm), although Na+, NO3?, and nssCa2+ were mainly detected in the coarse fraction (>2 μm). Average ionic concentrations (μg g?1) in precipitation at SJ were higher about 3.8 for Na+ and nssCa2+, 3.4 for NO3?, 3.7 for NH4+, 2.5 for nssSO42? than those at MR, whereas cumulative precipitation amounts at SJ and MR were, respectively, 84 and 175 cm of water equivalent. Wet and dry deposition amounts during the study period were estimated for sites using size-segregated aerosol data, winter averages of HNO3, NH3, and SO2 concentrations, and dry deposition velocities. Particle-dry deposition comprised about 3% (Na+) to 11% (NH4+) of the total deposition at MR. The maximum amounts of gas dry deposition were estimated, respectively, as 4, 13, and 3% of the total deposition at MR for NH4+, NO3?, and nssSO42?. The relative contributions of below-cloud scavenging (BCS) between MR and SJ were estimated as considering the wet only deposition amount at MR. Higher contributions of BCS were obtained for Na+ (56%) and nssCa2+ (45%), whereas BCSs for NH4+, NO3?, and nssSO42? were lower than 28%. Ionic constituents existing predominantly in the coarse fraction showed a large contribution of BCS.  相似文献   

17.
生物填料-沉水植物联用在河道水强化处理中的应用研究   总被引:1,自引:0,他引:1  
采用新型亲水性和疏水性材料作为生物填料,研究了生物填料-沉水植物联用技术在静态和原位水体中对武进港红旗河的水强化处理性能。静态实验选用2种生物填料考察其水处理特性,筛选出性能较好的填料进行了原位实验,沉水植物选取原位常见的狐尾藻、金鱼藻和伊乐藻。通过原位实验进一步考察了所选生物填料性能及生物填料-沉水植物联用对河道水的处理效果。结果表明,原位实验处理效果优于静态实验,原位实验中各测定指标的总平均去除率分别为:氨氮69.07%,亚硝氮70.28%,硝态氮47.58%,总氮53.28%,正磷酸盐84.88%,总磷83.50%。填料平均挂膜速率为453.01 nmol/(g.d)。  相似文献   

18.
The chemical composition of pollutant species in precipitation sampled daily or weekly at 10 sites in Ireland for the five-year period, 1994–1998, is presented. Sea salts accounted for 81% of the total ionic concentration. Approximately 50% of the SO42− in precipitation was from sea-salt sources. The proportion of sea salts in precipitation decreased sharply eastwards. In contrast, the concentration of NO3 and the proportion of non-sea-salt SO42− increased eastwards reflecting the closer proximity to major emission sources. The mean (molc) ratio of SO42−:NO3 was 1.6 for all sites, indicating that SO42− was the major acid anion.The spatial correlation between SO42−, NO3 and NH4+ concentrations in precipitation was statistically significant. The regional trend in NO3 concentration was best described by linear regression against easting. SO42− concentration followed a similar pattern. However, the regression was improved by inclusion of elevation. Inclusion of northing in the regression did not significantly improve any of the relationships except for NH4+, indicating a significant increase in concentrations from northwest to southeast.The spatial distribution of deposition fluxes showed similar gradients increasing from west and southwest to east and northeast. However, the pattern of deposition shows the influence of precipitation volume in determining the overall input. Mean depositions of sulphur and nitrogen in precipitation were ≈30 ktonnes S yr−1 and 48 ktonnes N yr−1 over the five-year period, 1994–1998, for Ireland.Least-squares linear regression analysis indicated a slight decreasing trend in precipitation concentrations for SO42− (20%), NO3 (13%) and H+ (24%) and a slight increasing trend for NH4+ (15%), over the period 1991–1998.  相似文献   

19.
不同回流比对无植物垂直流人工湿地除氮效果的影响   总被引:5,自引:2,他引:3  
通过内碳源前置反硝化脱氮工艺试验,比较了不同回流比对垂直流人工湿地除氮效果的影响。试验结果表明,TN去除率随着回流比增加而增加,NH+4-N去除率则随着回流比的增加先降低后增加的趋势,两者去除率之和以回流比200%为最高,以回流比150%次之,以回流比100%为最低。从TN的去除率来看,回流比150%略高于回流比200%。  相似文献   

20.
采用2套启动成功的上向流厌氧氨氧化(ANAMMOX)生物滤柱,通过调节进水NaNO2和(NH42SO4 的浓度负荷及水力负荷,改变进水容积负荷,探讨容积负荷对ANAMMOX生物滤柱脱氮效能的影响及其动力学模型。结果表明,滤速恒定条件下,通过提高进水基质浓度来提高进水TN容积负荷,其容积负荷去除动力学过程符合Monod-Haldane基质抑制模型。进水NH4+-N与NO2--N浓度分别低于100 mg/L和133 mg/L时,反应器脱氮效果不受明显影响,TN容积去除负荷可达4.21 kg/(m3·d),TN去除率可达80%以上。进水基质浓度恒定条件下,通过提高滤速来提高进水TN容积负荷,其容积负荷去除动力学过程符合零级动力学方程。不受基质浓度抑制的条件下,滤速为3.0 m/h、进水容积负荷为8.82 kg/(m3·d)时,反应器总氮容积负荷去除量可达7.15 kg/(m3·d),总氮去除率可达81.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号