共查询到20条相似文献,搜索用时 231 毫秒
1.
《Atmospheric environment (Oxford, England : 1994)》2007,41(16):3339-3351
Twenty-four-hour integrated gaseous and fine particulate were measured during 2004 at eight sites in the southeastern U.S. Mean concentrations for 2004 ranged from 2.44 ppbv at an urban-industrial site in North Birmingham, AL, to 0.23 ppbv at a rural-forested site near Centreville, AL. mixing ratios were found to be higher at urban sites than at nearby rural (or suburban sites) except for sites which were directly influenced by local sources. Only weak correlations with temperature were observed for at the sites; slightly greater correlations were observed for total ammonia vs. temperature. A weak seasonal variation was observed for mixing ratios at all sites, with all but one site exhibiting biannual maxima in spring and late summer/fall. Mean concentrations ranged from in Atlanta, GA, to at Oak Grove, MS, and were more uniform across the network than mixing ratios, with only slightly larger values at urban sites as compared to nearby rural (or suburban) sites. All sites exhibited highest between July and September and lowest in November and December. The gaseous fraction was observed to decrease with increasing values of at all sites. At two rural-forested sites and two sites near the Gulf of Mexico, the gaseous fraction approached a relatively constant value of 5–10% as increased beyond 5–, suggesting that availability at these locations limits aerosol neutralization. 相似文献
2.
This study compared the variations in the mass of certain particles at an urban site, Washington, DC, and at a remote site, Shenandoah National Park, VA, in the eastern United States. Seven years (1991-1997) of Interagency Monitoring of Protected Visual Environments (IMPROVE) fine particulate matter (PM2.5), PM10, coarse fraction, SO4(2-), and total sulfur data were used for this study together with available meteorology/climatology data. Various statistical modeling and analysis procedures, including time series analysis, factor analysis, and regression modeling, were employed. Time series of the constituents were divided into four terms: the long-term mean, the intraannual perturbation, the interannual perturbation, and the synoptic perturbation. PM2.5 at the two sites made up approximately 72% of the total mass for PM10, and the coarse fraction made up the remaining 28%, on average. Thirty-one percent of the PM2.5 at the DC site and 42% at the Shenandoah site was SO4(2-), based on average data for the entire period. At the DC site, the two main contributors to the constituent mass were the long-term mean and the synoptic perturbation terms, and at the Shenandoah site, they were the long-term mean and the intra-annual perturbation terms. This suggested that the constituent mass at the two sites was affected by very different processes. The terms that provided the principal contribution to the constituent mass at the two sites were studied in detail. At the DC site, dew point trends, a climate variable, were the primary driver of the 7-year trends for PM2.5, PM10, the coarse fraction, and total sulfur, and SO2 emission trends were the primary driver of the trends for SO4(2-). SO2 emission trends influenced the trends for PM2.5 and total sulfur, appearing as the second term in the model, but only parameters dealing with climate trends had significant effects on the trends for PM10 and the coarse fraction. At the Shenandoah site, only parameters dealing with climate trends affected long-term particle trends. 相似文献
3.
A thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilibrium (SCAPE2), was used to investigate the response of fine particulate NO3(-) to changes in concentrations of HNO3, NH3, and SO4(2-) in the southeastern United States. The data consisted of daily, 24-hr time resolution measurements from the Aerosol Research Inhalation Epidemiology Study (ARIES) Jefferson Street (Atlanta) site and five other sites of the Southeastern Aerosol Research and Characterization Project (SEARCH). Reductions of total NH3 (gas-phase NH3 plus particulate NH4(+)), total NO3(-) (HNO3 plus particulate NO3(-)), SO4(2-), or combined total NO3(-) (HNO3 plus particulate NO3(-)) with SO4(2-) were used to estimate the effects of changing emission levels. The conversion of SO2 to SO4(2-) and NO2 to HNO3 involves additional nonlinear reactions not incorporated into the model. For all sites, fine particulate NO3(-) concentrations decreased in response to reductions of either NH3 or total NO3(-), but the particulate NO3(-) decreases were greater for the NH3 reductions than for the total NO3(-) reductions. Particulate NO3(-) concentrations increased in response to reductions of SO4(2-). For the combined reduction (total NO3(-) plus SO4(2-)), the resulting particulate NO3(-) concentrations were on average no different than the base-case NO3(-) levels. Measurements of fine particulate NO3(-) and HNO3 support the modeling conclusions and indicate that particulate NO3(-) formation is limited by the availability of NH3 at most times at all SEARCH sites. 相似文献
4.
Measurements of carbonyls and C2–C6 non-methane hydrocarbons (NMHCs) were made in ambient air at a rural site at the summit of Whiteface Mountain (WFM) in New York State. Alkanes dominated in the samples, with ethane and propane making up about 55% of the total on a carbon-atom basis. Ethane, the longest-lived of the NMHCs, showed a mixing ratio in the range of 0.86–2.1 ppbv. Photochemical ageing analysis indicated an anthropogenic influence on the NMHC levels. The photochemical reactivity of the hydrocarbons, calculated in terms of propylene-equivalent concentration, was dominated by alkenes (propene and ethene), which accounted for 74% of the total NMHC sum. Air mass back-trajectories have been used to investigate the origin of the observed NMHCs and carbonyls. Higher concentrations were found when air masses arrived from the midwestern US corridor. Acetone was the most abundant species, comprising from 31% to 53% of the total detected carbonyls, followed by MEK (15–53%), HCHO (7–39%), and CH3CHO (7–19%). Average concentrations were determined to be 1.61 ppbv for CH3C(O)CH3, 1.40 ppbv for MEK, 1.16 ppbv for HCHO, and 0.49 ppbv for CH3CHO. The variations in carbonyl concentrations were observed to follow patterns similar to variations in O3 concentrations, typical of secondary products. Correlations and statistical analysis of the carbonyls and NMHCs were performed, and showed that most of the compounds derived from mixing and photochemical transformation of long-range transported pollutants from the major source areas. Ranking of the carbonyls with respect to removal of the OH radical showed HCHO to be the most important species, followed by CH3CHO, MEK, and CH3C(O)CH3. 相似文献
5.
Aneja VP Brittig JS Kim DS Hanna A 《Journal of the Air & Waste Management Association (1995)》2004,54(6):681-688
An analysis of ozone (O3) concentrations and several other air quality-related variables was performed to elucidate their relationship with visibility at five urban and semi-urban locations in the southeast United States during the summer seasons of 1980-1996. The role and impact of O3 on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis over the 1980s reveals an increase in maximum O3 concentration coupled with a decrease in visibility. However, a similar analysis for the 1990s shows a leveling-off of both O3 and visibility; in both cases, the results were not statistically significant at the 5% level. A case study of site-specific trends at Nashville, TN, followed similar trends. To better understand the relationships between O3 concentration and visibility, the analysis was varied from yearly through daily to hourly averaged values. This increased temporal resolution showed a statistically significant inverse relationship between visibility and O3. Site-specific hourly r2 values ranged from 0.02 to 0.43. Additionally, by performing back-trajectory analysis, it was found that the visibility degraded by air mass migration over polluted areas. 相似文献
6.
《Atmospheric environment(England)》1987,21(11):2435-2444
The frequency of co-occurrences for SO2NO2, SO2/O3 and O3/NO2 at rural and remote monitoring sites in the United States was characterized for the months of May-September for the years 1978–1982. Minimum hourly concentrations of 0.03 and 0.05 ppm of each gas were used as the criteria for defining a ‘co-occurrence’. The objectives of this study were to:
- 1.(1) identify the types of co-occurrence patterns and their frequency;
- 2.(2) identify whether the frequency of hourly simultaneous co-occurrences increased substantially when the minimum concentration was lowered (e.g. from 0.05 to 0.03 ppm) for each pollutant; and
- 3.(3) determine whether the frequency of co-occurrences showed large year-to-year variation.
- 1.(1) hourly simultaneous and daily simultaneous-only co-occurrences are fairly rare and
- 2.(2) when co-occurrences are present, complex-sequential and sequential-only co-occurrence patterns predominate.
7.
Abstract Daily atmospheric concentrations of sulfate collected at six locations in the northeastern United States are regressed against meteorological factors, ozone, seasonal cycles, and time in order to determine if a significant trend in sulfate can be detected. The data used in this analysis were collected during the Sulfate Regional Experiment (SURE, 1977-1978) and the Eulerian Model Evaluation Field Study (EMEFS, 1988-1989). Ozone, specific humidity, and seasonal terms (reflecting the potential of the atmosphere for oxidation of sulfur dioxide) emerged as important explanatory variables. After accounting for the variability explained by environmental factors, the median estimated change in sulfate concentration from the six locations over the 11-year period is -22% (or -28% if ozone is not used as an explanatory variable). Although there are wide variations among locations, these changes are commensurate with an estimated 25% decline in sulfur emissions in the northeastern U.S. during the same period. These analyses provide insight into methods for detecting reductions in sulfate that may be expected to occur as a result of the Clean Air Act Amendments of 1990. Uncertainties in the estimates, with consideration of serial correlation in the data, imply a minimum detectable reduction of 10% using this modeling procedure with similar data availability. 相似文献
8.
Hydrogen ions in precipitation vary primarily with (SO4 + NO3) concentration. However the slope of the H: (SO4 + NO3) relation for high concentrations (0.60 and 0.61) is twice that at low concentrations (0.32 and 0.22) in European and US samples respectively. Sulphuric and nitric acid dominate precipitation in the US. Precipitation in Europe, although nearly equally acid, is dominated by NH4+, Ca2+, and Mg2+ salts at total ionic concentrations 2 and 3 times higher. Ion concentrations in precipitation, other than H, are proportional to their respective emission fluxes. 相似文献
9.
Hourly averaged data for ozone collected in 1986 and 1987 were analyzed and characterized for a select set of high-elevation sites in the eastern United States. Pressure-corrected adjustments may be necessary when comparing ozone concentrations measured at two different elevations. When unadjusted concentrations (i.e. in units of parts per million) were used, the Whiteface Mountain sites showed what appeared to be an ozone elevational gradient. A gradient was not observed for the two MCCP Shenandoah National Park sites (SH1 and SH2). When adjusted ozone values (i.e. in units of micrograms per cubic meter) were used, the elevational gradient reported for Whiteface Mountain was no longer observed. When unadjusted concentrations were used, in most cases the high-elevation sites appeared to be receiving greater ozone exposure than the nearby, lower elevation sites. When adjusted ozone values were used, a consistent conclusion was not evident. On a regional basis for the period May through September 1987, when unadjusted concentrations were used, the high-elevation sites in the South appeared to experience higher cumulative ozone exposures than sites in the North. When adjusted ozone values were used, the geographic gradient was not strong. Assuming that target sensitivity remains nearly constant as elevation changes, adjusted concentrations should be taken into consideration when evaluating the relationship between ozone exposures at high-elevation sites and biological effects. 相似文献
10.
C. V. Mathai I. H. Tombach 《Journal of the Air & Waste Management Association (1995)》2013,63(6):700-707
As part of a study examining the technical basis for a secondary national ambient air quality standard for fine particulate matter to protect visibility, we reviewed available data on atmospheric aerosol and visibility in the eastern U.S. This paper presents the results of that visibility and aerosol characterization. Analysis of airport visibility data indicates that the annual median visual ranges in the East are in the 16-25 km range. In the absence of a "reference method," limited measurements of visibility using various types of instruments provide data generally in agreement with the airport visibility estimates when a contrast threshold of 0.05 is assumed in calculating visual range from the instrumental measurements. Both long- and short-term aerosol measurements have yielded consistent results; however, because of the differences in instrumentation and laboratory analytical techniques among various studies, data often are not directly comparable. The measured annual average fine particulate matter mass concentration is about 18 μg/m3 in the rural East; during summer it increases to about 23 μg/m3. If all the sulfur in the fine mass is assumed to exist as ammonium sulfate, it would constitute 46 percent of the annual mean and about 60 percent of the summer mean fine mass concentrations. Carbon and volatiles, including water, are believed to constitute significant fractions of the fine mass; however, there are little data quantifying their contributions to fine mass and visibility impairment. Additional long-term measurements of visibility and fine aerosol and its various components are necessary to completely characterize visibility and aerosol in the East. 相似文献
11.
12.
《Atmospheric environment(England)》1984,18(4):783-791
Data from a 40 site network of air samplers in the western United States were used in a principal components analysis to obtain spatial patterns of the inter-site correlations of sulfur concentrations. After rotation of the initial eigenvectors, two large regions were identified which accounted for 33.1% of the variance in the data. Three other smaller regions were identified which also had significant variance. The first eigenvector included all sites in the southern part of the network and was attributed to copper smelter emissions in Arizona and New Mexico. The second eigenvector included sites in the northern great plains and was attributed to episodic incursions of sulfur from the east. The third, fourth and fifth eigenvectors were attributed to locally important conditions. 相似文献
13.
Shah SB Westerman PW Arogo J 《Journal of the Air & Waste Management Association (1995)》2006,56(7):945-960
Aerial ammonia concentrations (Cg) are measured using acid scrubbers, filter packs, denuders, or optical methods. Using Cg and wind speed or airflow rate, ammonia emission rate or flux can be directly estimated using enclosures or micrometeorological methods. Using nitrogen (N) recovery is not recommended, mainly because the different gaseous N components cannot be separated. Although low cost and replicable, chambers modify environmental conditions and are suitable only for comparing treatments. Wind tunnels do not modify environmental conditions as much as chambers, but they may not be appropriate for determining ammonia fluxes; however, they can be used to compare emissions and test models. Larger wind tunnels that also simulate natural wind profiles may be more useful for comparing treatments than micrometeorological methods because the latter require larger plots and are, thus, difficult to replicate. For determining absolute ammonia flux, the micrometeorological methods are the most suitable because they are nonintrusive. For use with micrometeorological methods, both the passive denuders and optical methods give comparable accuracies, although the latter give real-time Cg but at a higher cost. The passive denuder is wind weighted and also costs less than forced-air Cg measurement methods, but it requires calibration. When ammonia contamination during sample preparation and handling is a concern and separating the gas-phase ammonia and aerosol ammonium is not required, the scrubber is preferred over the passive denuder. The photothermal interferometer, because of its low detection limit and robustness, may hold potential for use in agriculture, but it requires evaluation. With its simpler theoretical basis and fewer restrictions, the integrated horizontal flux (IHF) method is preferable over other micrometeorological methods, particularly for lagoons, where berms and land-lagoon boundaries modify wind flow and flux gradients. With uniform wind flow, the ZINST method requiring measurement at one predetermined height may perform comparably to the IHF method but at a lower cost. 相似文献
14.
《Atmospheric environment (Oxford, England : 1994)》2001,35(2):297-304
A receptor model for predicting future PM10 concentrations has been developed within the framework of the UK Airborne Particles Expert Group and applied during the recently completed review of the UK National Air Quality Strategy. The model uses a combination of measured PM10, oxides of nitrogen and particulate sulphate concentrations to provide daily estimates of the contributions to total particle concentrations from primary combustion, secondary and other (generally coarse) particle sources. Projections of past and future concentrations of PM10 are estimated by applying appropriate reductions to the current concentrations of the three components based on an understanding of the likely impact of current policies on future levels. Projections have been derived from 1996, 1997 and 1998 monitoring data and compared with UK national air quality objectives and European Union limit values. One of the key uncertainties within the receptor modelling method is the assignment of the residual PM10, remaining after the assignment of primary combustion and secondary particle contributions, to the ‘other’ particle fraction. An examination of the difference between measured PM10 and PM2.5 concentrations confirms our assignment of the bulk of this residual to coarse particles. Projections based on 1996 monitoring data are the highest and those based on 1998 monitoring data are the lowest. Whilst there is considerable difference between these projections they are consistent with measured concentrations for previous years. All three projections suggest that with current agreed policies the EU annual mean limit value will be achieved. The 24-h mean limit value is projected to be achievable when projections are derived from 1997 and 1998 data, but not from 1996 data. All three projections suggest that with current agreed policies the central London site will not achieve the provisional 1997 UK National Air Quality Strategy objective. 相似文献
15.
《Atmospheric environment(England)》1985,19(4):611-622
A unique combination of an effective sampler and analysis of individual particles has been used in studying large particles (> 5 μm) at a rural site in eastern United States. The sampler is a modified ‘high volume’ rotary inertial impactor, which consists of four collectors of different widths, rotating at high speed and collecting particles by impaction. The collector surfaces were Mylar films coated with apiezon to ensure retention. After sampling, the collection surfaces were weighted to obtain the mass-size distribution. A section of the Mylar sample was transferred to a scanning electron microscope to study in detail the morphology and elemental content of individual particles.Results from two case studies indicated the following conclusions could be made:
- 1.(a) Natural sources, minerals and biologicals, were the main contributors to large particles (> 5 μm),
- 2.(b) Contribution of anthropogenic sources, mainly coal-fired power plants emitting fly ash particles, was limited to a few percent of the 5–10 μm size range,
- 3.(c) Pollen and some of the minerals were enriched in sulfur, probably as accumulation of sulfate on the particle surface,
- 4.(d) At low wind speeds the anthropogenic contribution was enhanced, whereas at high wind speeds natural sources were almost the only contributors to the large particle mode.
16.
Total gaseous mercury (Hg) (TGM), gaseous oxidized Hg (GOM), and particulate-bound Hg (PBM) concentrations and dry depositions were measured at an urban site in central Taiwan. The concentrations were 6.14 ± 3.91 ng m−3, 332 ± 153, and 71.1 ± 46.1 pg m−3, respectively. These results demonstrate high Hg pollution at the ground level in Taiwan. A back trajectory plot shows the sources of the high TGM concentration were in the low atmosphere (<500 m) and approximately 50% of the air masses coming from upper troposphere (>500 m) were associated with low TGM concentrations. This finding implies that Hg is trapped in the low atmosphere and comes from local Hg emission sources. The conditional probability function (CPF) reveals that the plumes of high TGM concentrations come from the south and northwest of the site. The plume from the south comes from two municipal solid waste incinerators (MSWIs). However, no significant Hg point source is located to the northwest of the site; therefore, the plumes from the northwest are hypothesized to be related to the combustion of agricultural waste. Dry deposition fluxes of Hg measured at this site considerably exceeded those measured in North America. Overall, this area is regarded as a highly Hg contaminated area because of local Hg emission sources. 相似文献
17.
18.
《Atmospheric environment (Oxford, England : 1994)》2007,41(35):7389-7400
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future. 相似文献
19.
Patterson P Iyer H Sisler J Malm WC 《Journal of the Air & Waste Management Association (1995)》2000,50(5):790-801
An apparent increasing trend in the summer concentrations of particulate sulfur at Shenandoah (for the time period 1982-1995) and at Great Smoky Mountains (for the time period 1984-1995) has been pointed out by some researchers. Others have suggested that these increasing trends may be an analytical artifact resulting from the switch from the Stacked Filter Units (SFU) measurement system to the IMPROVE (Interagency Monitoring of Protected Visual Environments) measurement system that occurred during the winter of 1987. To obtain a better understanding of the effect of the protocol change, we investigate the changes in the seasonal averages of sulfur concentrations for successive pairs of years for the period 1980-1996 for about 20 national park sites in the United States. For the period 1980-1987, we use sulfur data from the old (SFU) database and for the period 1988-1996, we use the IMPROVE database. Changes from one year to the next similar to that between 1987 and 1988 occurred during other years and seasons suggesting that chance causes alone could perhaps explain it, the degree to which chance could have caused the changes was measured using the permutation test for matched. At the very least, additional information such as side by side readings using SFU and IMPROVE measurement methods, may be needed to better understand any systematic effect in the sulfur measurements that may be ascribable to the protocol change. 相似文献
20.
Kentaro Hayashi Nobuhisa Koga Yosuke Yanai 《Atmospheric environment (Oxford, England : 1994)》2009,43(35):5702-5707
The present study aimed to investigate the NH3 volatilization loss from field-applied compost and chemical fertilizer and evaluate the atmosphere–land exchange of NH3 and particulate NH4+ (pNH4) at an upland field with volcanic ash soil (Andosol) in Hokkaido, northern Japan. Two-step basal fertilization was conducted on the bare soil surface. First, a moderately fermented compost of cattle manure was applied by surface incorporation (mixing depth, 0–15 cm) at a rate of 117 kg N ha−1 as total nitrogen (T-N) corresponding to 9.9 kg N ha−1 as ammoniacal nitrogen (NH4–N). Twelve days later, a chemical fertilizer containing 10% (w/w) of NH4–N as a mixture of ammonium sulfate and ammonium phosphates was applied by row placement (cover depth, 3 cm) at a rate of 100 kg N ha−1 as NH4–N. The study period was divided into the first-half, beginning after the compost application (CCM period), and the second-half, beginning after the chemical fertilizer application (CF period). The mean air concentrations of NH3 and pNH4 (1.5 m height) were 7.6 and 3.0 μg N m−3, respectively, in the CCM period; the values were 3.7 and 3.9 μg N m−3, respectively, in the CF period. The composition ratios of NH3 to the sum of NH3 and pNH4 (1.5 m height) were 72% and 49% in the CCM and CF periods, respectively. The NH3 volatilization loss from the compost was 0.8% of the applied T-N (or 9.3% of the applied NH4–N) and that from the chemical fertilizer was near zero. Excluding the period immediately after the compost application, the upland field acted as a net sink for NH3 and pNH4. 相似文献