首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
Polychlorinated biphenyls (PCBs) and particulate organic/elemental carbon (OC/EC) differ as to sources, but are both elevated in major urban areas leading to loadings of proximate terrestrial and aquatic systems. Because of the dramatic difference in speciation, sources, and sinks of these compunds, gas+particulate phase PCBs and particulate OC/EC were measured in urban Baltimore, MD and over Chesapeake Bay at 4 and 12 h frequencies in July 1997. Gas phase ∑PCBs averaged 1180 pg m−3 for Baltimore and 550 pg m−3 for northern Chesapeake Bay. PCB homolog distributions in the gas phase differed between the land and over-water sites whereby the trichlorobiphenyls were higher in Baltimore compared to Chesapeake Bay. Autocorrelation analysis yielded a diurnal cycle for gas phase PCBs at Baltimore with the lowest concentrations observed during the day. Particulate organic and elemental carbon constituted 12.4% (17.4% organic matter) and 2.8% of total suspended particles (TSP) in Baltimore, and 15.0% (21.0% organic matter) and 5.3% over the Chesapeake Bay, respectively. Variability in PCB concentrations was not related to the variability in OC/EC concentrations. OC/EC ratios suggest that particulate organic carbon was mostly primary aerosol. Emissions of both classes of compounds into the Baltimore atmosphere and vicinity are major sources to the Bay.  相似文献   

2.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

3.
Membrane-enclosed copolymer (MECOPs) samplers containing crystalline copolymers of ethylvinylbenzene-divinylbenzene in polyethylene membranes were used to assess the influence of a steel complex on the level and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in ambient air. MECOPs were deployed at six sites in Pohang, Korea for 37 days (August 9, 2005–September 14, 2005). Fluorene, phenanthrene, anthracene, and fluoranthene were dominant PAHs with the highest contribution of phenanthrene (59%) to the total amount of vapor-phase PAHs. The spatial distribution of total PAHs in the vapor phase ranging from 76 to 1077 ng MECOP−1 and air dispersion modeling suggested that the steel complex was the major PAH source in Pohang. It was revealed that the major wind directions rather than the distance from the steel complex were a significant factor affecting the levels of PAHs at the sampling sites. Finally, we tried to convert MECOP concentrations (ng MECOP−1) to air concentrations (ng m−3) with the modified sampling rates (m3 day−1). This study demonstrates again that passive air samplers are useful tools for spatially resolved and time-integrated monitoring of semivolatile organic compounds (SOCs) in ambient air.  相似文献   

4.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

5.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

6.
Road dust samples were collected from central Shanghai in winter (January) and summer (August), respectively. Sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (USEPA) priority-controlled list were determined by GC/MS. Total PAH (t-PAH) concentrations in winter samples ranged from 9176 to 32,573 ng g−1 with a mean value of 20,648 ng g−1, while they varied from 6875 to 27,766 ng g−1 in summer with an average of 14,098 ng g−1. Spatial variation showed that city park (CP) samples had the lowest t-PAH concentration, while industrial area (ID) and traffic area (TR) and commercial area (CO) were the most polluted, in both seasons. PAH homologues concentrations were getting higher with the more rings and higher molecular weight (HMW) in all areas. The study of effective factors showed that grain size was only a minor factor influencing the accumulation of PAHs, whereas total organic carbon (TOC) was found to be closely correlated with t-PAH concentration. Prevailing winds could directly affect on the spatial distribution of PAHs. Chemical source apportionment studies took the form of principal component analysis (PCA), followed by compositional analysis. It was demonstrated that road dust PAHs in central Shanghai mainly came from the mixing of traffic and coal combustion. The contribution percentages of pyrogenic and petrogenic sources were respectively 71.0% and 11.4% in winter, while they were, 64.9% and 14.1% in summer, respectively. Road dust PAHs in Shanghai city mostly came from local sources.  相似文献   

7.
PM2.5 aerosols were collected in Nanjing, a typical mega-city in China, during summer and winter 2004 and were characterized for aromatic and cyclic compounds using a GC/MS technique to understand the air pollution problem. They include polycyclic aromatic hydrocarbons (PAHs), hopanes, phthalates and hydroxy-PAHs (OH-PAHs). PAHs, hopanes and OH-PAHs presented higher concentrations in winter (26–178, 3.0–18, and 0.013–0.421 ng m−3, respectively) than in summer (12–96, 1.6–11, and 0.029–0.171 ng m−3, respectively) due to an enhanced coal burning for house heating and atmospheric inversion layers developed in the cold season. In contrast, phthalates are more abundant in summer (109–368 ng m−3, average 230 ng m−3) than in winter (33–390 ng m−3, average 170 ng m−3) due to an enhanced evaporation from plastics during the hot season and the subsequent deposition on the pre-existing particles. Generally, all the identified compounds showed higher concentrations in nighttime than in daytime due to inversion layers and increased emissions from heavy-duty trucks at night. PAHs, hopanes and phthalates in Nanjing aerosols are 5–100 times more abundant than those in Los Angeles, USA, indicating a serious air pollution problem in the city. Concentrations of OH-PAHs are 1–3 orders of magnitude less than their parent PAHs and comparable to those reported from other international cities. Source identification using diagnostic ratios of the organic tracers suggests that PAHs in Nanjing urban area are mainly derived from coal burning, whereas hopanes are more attributable to traffic emissions.  相似文献   

8.
9.
Persistent organic pollutants (POPs) such as PAHs are subject to long-range atmospheric transport, which can result in the contamination of remote areas such as the Arctic. A simple model was developed to describe the removal processes of four PAHs; fluorene (FLU), phenanthrene (PHEN), fluoranthene (FLA) and benzo[a]pyrene (B[a]P) transported over a 5 day period from a source area over the UK to the Russian Arctic. The purpose of this model was to study processes affecting the PAHs within the atmosphere, rather than their interaction with the earth's surface. The components to the model included gas/particle partitioning, reaction with OH radicals and dry and wet deposition (both rain and snow). Atmospheric/meteorological parameters for the geographical region of interest were generated from three-dimensional atmospheric models. Air concentrations were prescribed in the source area with no additional PAH inputs along the transect, both winter and summer scenarios were modelled. Reaction with OH was a major removal mechanism for gas-phase FLU, PHEN and FLA, most notably in the temperate atmosphere. Wet deposition in the form of snow accounted for the majority of PAH loss in the winter, although the gas and particle scavenging ratios used in this model ranged over several orders of magnitude. Using a 5 day transport scenario in a `1-hop’ event, the model predicted that a primary emission of FLA and B[a]P to the atmosphere of the southern UK, would not reach the Russian Arctic at a distance of ∼3500 km, assuming a constant windspeed of 10 m s−1. However, both FLU and PHEN with calculated half-lives of >60 h during the winter could be transported to this area under this scenario.  相似文献   

10.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

11.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study the spatial and temporal variabilities and to explore the significance of averaging effects inherent to 24 h-sampling. Measurement uncertainty was quantified on basis of three independent side-by-side samplers, deployed at one of the sites.PAH abundances in the urban and rural environments differed largely. Levels at the urban sites exceeded the levels at the rural site by >100%. The discrepancy was largely dominated by emission of 3–4 ring PAHs in the city, while 5–6 ring PAHs were more evenly distributed between city sites and the hill site. During the night a higher fraction of the semivolatile PAHs might have been stored in the soil or sorbed to surfaces. PAH patterns were undistinguishable across the three sites. However, concentrations of more particle-associated substances differed significantly between the urban sites than between one of the urban sites and the rural site (3σ uncertainty). Time-averaging (on a 24 h-basis) would have masked the significant inter-site differences of half of the substances which were found at different levels (on a 4 h-basis).  相似文献   

13.
Atmospheric monitoring of PCBs and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB (tPCB) concentrations in air ranged from 0.21 to 4.78 ng m−3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34 ng l−1, with tetra-chlorinated PCBs predominating. The predominant isomers found in air and rain were α- and γ-HCH, α- and γ-chlordanes, 4,4′-DDT, and dieldrin. The concentrations of PCBs and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of PCBs in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of HCHs were elevated in April, May, and October, perhaps due to local and/or regional applications of γ-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of PCBs to Galveston Bay (6.40 μg m−2 yr−1) was significantly higher than that of pesticides by a factor of 5–10. The net flux from gas exchange estimated for PCBs was from Galveston Bay water to the atmosphere (78 μg m−2 yr−1). Gas exchange of PCBs from bay water to the atmosphere was the dominant flux.  相似文献   

14.
Surface soil and passive air samples from a network of 23 sampling sites across Costa Rica were analyzed for polycyclic aromatic hydrocarbons (PAHs), allowing for an evaluation of absolute levels, spatial distribution patterns, air/soil concentration (A/S) ratios and relative composition. Annual mean concentrations of four-ring PAHs in air were low (median of approximately 40 pg m−3), except in Costa Rica's densely populated central valley (approximately 650 pg m−3). PAH concentrations in soil were also low (median of 5 ng g−1 dry weight) and comparable to those reported for other tropical regions. These low soil concentrations result in A/S ratios of four-ring PAHs in Costa Rica that are higher than the equilibrium air–soil partitioning coefficients and also higher than A/S ratios reported for temperate locations. A series of model calculations of increasing complexity were used to seek an explanation for variable A/S ratios of PAHs under tropical and temperate conditions. Temperature-driven changes in air–soil partitioning and differences in PAH degradability under temperate and tropical conditions are insufficient to explain the higher soil concentrations and lower A/S ratios in temperate regions. However, these can be explained by atmospheric deposition of PAHs during historical periods of much higher emissions and air concentrations and by persistence of PAHs in soils on the order of decades. Low PAH concentrations in tropical soils were found to be consistent with constant or increasing emissions, and in particular, do not require that degradation rates in soil are much faster than in temperate areas. In comparison to temperate soils, soils from Costa Rica and other tropical regions have a higher relative abundance of the lighter PAHs. This likely reflects a higher source contribution from biomass burning in the tropics, as well as the preferential loss of lighter PAHs from temperate soils that experienced high PAH deposition in the past.  相似文献   

15.
Atmospheric dry deposition is an important process for the introduction of aerosols and pollutants to aquatic environments. The objective of this paper is to assess, for the first time, the influence that the aquatic surface microlayer plays as a modifying factor of the magnitude of dry aerosol deposition fluxes. The occurrence of a low surface tension (ST) or a hydrophobic surface microlayer has been generated by spiking milli-Q water or pre-filtered seawater with a surfactant or octanol, respectively. The results show that fine mode (<2.7 μm) aerosol phase PAHs deposit with fluxes 2–3 fold higher when there is a low ST aquatic surface due to enhanced sequestration of colliding particles at the surface. Conversely, for PAHs bound to coarse mode aerosols (>2.7 μm), even though there is an enhanced deposition due to the surface microlayer for some sampling periods, the effect is not observed consistently. This is due to the importance of gravitational settling for large aerosols, rendering a lower influence of the aquatic surface on dry deposition fluxes. ST (mN m−1) is identified as one of the key factor driving the magnitude of PAH dry deposition fluxes (ng m−2 d−1) by its influence on PAH concentrations in deposited aerosols and deposition velocities (vd, cm s−1). Indeed, vd values are a function of ST as obtained by least square fitting and given by Ln(vd)=−1.77 Ln(ST)+5.74 (r2=0.95) under low wind speed (average 4 m s−1) conditions.  相似文献   

16.
17.
Investigations have been undertaken at two integrated steelworks in the UK to characterise airborne organic micro-pollutants and to assess the contribution of iron ore sintering and coke making operations on the air quality. Concentrations of volatile organic compounds (VOCs), namely benzene, toluene and p-xylene, were measured continuously within the boundary of a coking plant using for the first time differential optical absorption spectrometry (DOAS) between 2004 and 2006. Concentrations were obtained along two monitoring paths surrounding the coke plant and the average benzene concentration measured along both paths over the campaign was 28 μg m?3. Highest benzene concentrations were associated with winds downwind of the coke oven batteries. Concentrations of polycyclic aromatic hydrocarbons (PAHs) in ambient air were measured during 27 consecutive days in 2005 at three different locations on an integrated steelworks. PAH profiles were determined for each sampling point and compared to coke oven and sinter plant emission profiles showing an impact from the steelworks. The mean benzo [a] pyrene concentration determined in the immediate vicinity of the coke ovens downwind from the battery was 19 ng m?3, whereas for the two other sites average benzo [a] pyrene concentrations were much lower (around 1 ng m?3). Data were analysed using principal components analysis (PCA) and results showed that coke making and iron ore sintering were responsible for most of the variation in the PAH concentrations in the vicinity of the investigated plant.  相似文献   

18.
Polychlorinated biphenyls (PCBs) and Polybrominated Diphenyls Ethers (PBDEs) are two highly lipophilic classes of persistent organic pollutants able to resist degradation and with the ability to bioaccumulate through the food chain. In Brazil, there are still few studies on PCBs and PBDEs in aquatic organisms. In this study, we determined the levels of PBDEs and PCBs in three different fish species from the Ilha Grande Bay, located in the southern state of Rio de Janeiro, Brazil. PBDEs levels were very low, with values below the limit of quantification. PCBs concentrations ranged from 2.29 to 27.60 ng g?1 ww in muscle and from 3.41 to 34.22 ng g?1 ww in liver of the three investigated fish species. Significant positive correlations were established between PCBs concentration and fish biometric variables in mullet (length and lipid content) and a statistically significant change between seasons in croaker was observed.  相似文献   

19.
High mountains may serve both as condenser for vapor phase persistent organic pollutants (POPs) and as barrier/sink for particulate associated less volatile POPs. The fractionation of POPs along altitudinal profiles is of interest in understanding the role of high mountains in the atmospheric transport of POPs. In the present study, polycyclic aromatic hydrocarbons (PAHs) in a selected moss species, Hypnum plumaeformae WILS, from two altitudinal profiles on the northern slope of Nanling mountains in Southern China were analyzed and compared with those in air samples. The total PAH concentration in the mosses was 310–1340 ng g−1 dry weight, with phenanthrene being the most abundant. The distribution patterns of PAHs in the moss samples matched well with those in bulk atmosphere deposition in the adjacent source areas. The PAH distribution pattern in the mosses was a composite of both particle-associated and vapor phase PAHs, with heavy PAHs are susceptible to uptake/retention by mosses than light PAHs. A plot of log (Cmoss/Cair) against log Koa gave a good linear relationship in the log Kao range of 6.7–10.2. It is suggested that the widely spread moss, H. plumaeformae WILS, can be used as an effective tool in the biomonitoring of atmospheric PAHs pollution in East Asia. The concentrations of most PAHs in the mosses generally declined with increasing altitude. In addition, there was a shift in compound pattern with an increase in the proportion of light PAHs (2–3 rings), a decrease in heavy PAHs (5–6 rings) and a relatively stable content of 4-ring PAHs. A combination of particulate scavenging and cold condensation are proposed as the major mechanisms for the compositional fractionation of PAHs along the altitudinal profile.  相似文献   

20.
Fine particle (PM2.5) samples were collected, using a charcoal diffusion denuder, in two urban areas of Chile, Santiago and Temuco, during the winter and spring season of 1998. Molecular markers of the organic aerosol were determined using GC/MS. Diagnostic ratios and molecular tracers were used to investigate the origin of carbonaceous aerosols. As main sources, road and non-road engine emissions in Santiago, and wood burning in Temuco were identified. Cluster analysis was used to compare the chemical characteristics of carbonaceous aerosols between the two urban environments. Distinct differences between Santiago and Temuco samples were observed. High concentrations of isoprenoid (30–69 ng m−3) and unresolved complex mixture (UCM) of hydrocarbons (839–1369 ng m−3) were found in Santiago. High concentrations of polynuclear aromatic hydrocarbons (751±304 ng m−3) and their oxygenated derivatives (4±2 ng m−3), and of n-alk-1-enes (16±13 ng m−3) were observed in Temuco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号