共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Atmospheric environment (Oxford, England : 1994)》2007,41(26):5502-5509
Atmospheric chemistry directly above snowpacks is strongly influenced by ultraviolet (UV) radiation initiated emissions of chemicals from the snowpack. The emission of gases from the snowpack to the atmosphere is in part due to chemical reactions between hydroxyl radical, OH (produced from photolysis of hydrogen peroxide (H2O2) or nitrate (NO3−)) and impurities in the snowpack. The work presented here is a radiative-transfer modelling study to calculate the depth-integrated production rates of hydroxyl radical from the photolysis of hydrogen peroxide and nitrate anion in snow for four different snowpacks and for solar zenith angles 30°–90°. This work also demonstrates the importance of hydrogen peroxide photolysis to produce hydroxyl radical relative to nitrate photolysis with (a) different snowpacks, (b) different ozone column depths, and (c) snowpack depths. The importance of hydrogen peroxide photolysis over nitrate photolysis for hydroxyl radical production increases with increasing depth in snowpack, column ozone depth, and solar zenith angle. With a solar zenith angle of 60° the production of hydroxyl radical from hydrogen peroxide photolysis accounts for 91–99% of all hydroxyl radical production from hydrogen peroxide and nitrate photolysis. 相似文献
3.
Golam Sarwar Robert W. Pinder K. Wyat Appel Rohit Mathur Annmarie G. Carlton 《Atmospheric environment (Oxford, England : 1994)》2009,43(40):6383-6387
Impact of the excited nitrogen dioxide (NO21) chemistry on air quality in the U.S. is examined using the Community Multiscale Air Quality (CMAQ) model for a summer month. Model simulations were conducted with and without the NO21 chemistry. The largest impact of the NO21 chemistry in the eastern U.S. occurred in the northeast and in the western U.S. occurred in Los Angeles. While the single largest daily maximum 8-h ozone (O3) increased by 9 ppbv in eastern U.S. and 6 ppbv in western U.S., increases on most days were much lower. No appreciable change in model performance statistics for surface-level O3 predictions relative to measurements is noted between simulations with and without the NO21 chemistry. Based on model calculations using current estimates of tropospheric emission burden, the NO21 chemistry can increase the monthly mean daytime hydroxyl radicals (OH) and nitrous acid (HONO) by a maximum of 28% and 100 pptv, respectively. 相似文献
4.
《Atmospheric environment (Oxford, England : 1994)》2002,36(34):5355-5364
Benzene, toluene, sulphur dioxide, ozone and nitrogen dioxide were measured at a mean level of 13.5 m above ground in a narrow, four-lane street canyon (height 30 m, width 20 m) in Thessaloniki, Greece during the period January–July 1997 by means of a commercial differential optical absorption spectrometer (OPSIS DOAS). Primary pollutant levels were found to be 2.5–4.4 times higher during the cold part of the year than during the warm part of the year, the winter/summer ratio increasing with the reaction rate constant with OH for each of the measured species. Ozone, on the other hand, exhibited a winter/summer ratio of 0.36. NO2 originates from both primary and secondary sources; its winter/summer concentration ratio of 1.4 lies, therefore, between those of primary pollutants and ozone. Pollution levels were influenced considerably by wind speed, while for the street canyon under study wind direction did not influence pollutant levels considerably. While primary pollution was found to decrease with increasing wind speed, ozone increased. Benzene mean levels during the study period were around 6 ppb and hence much higher than the EU annual limit value of 5 μg m−3 (1.44 ppb at STP). Toluene mean levels were around 14 ppb and hence also several times above the WHO recommendation of 2 ppb for 24 h. The apportionment of traffic emissions in four time zones used in most inventories in urban airshed models was tested using benzene and toluene measurements at low (<1 m s−1) wind speeds. The agreement between model emissions and calculated emissions apportionment into the four time zones was good, except for Zone D (23:00–1:59), where model inventory emissions were somewhat too low. 相似文献
5.
Menno Keuken Michiel Roemer Sef van den Elshout 《Atmospheric environment (Oxford, England : 1994)》2009,43(31):4780-4783
The annual air quality standard of NO2 is often exceeded in urban areas near heavy traffic locations. Despite significant decrease of NOx emissions in 1986–2005 in the industrial and harbour area near Rotterdam, NO2 concentrations at the urban background remain at the same level since the end of the nineties. Trend analysis of monitoring data revealed that the ozone/NOx equilibrium is a more important factor than increasing direct NO2 emissions by traffic. The latter has recently been identified as an additional NO2 source due to the introduction of oxy-catalytic converters in diesel vehicles and the growing number of diesel vehicles. However, in Rotterdam over the period 1986–2005 direct NO2 emissions by road traffic only increased 3–4%. Due to the importance of the ozone/NOx equilibrium, it is concluded that local NOx emissions in Rotterdam need substantial reduction to achieve lower NO2 urban background levels. This is a relatively costly abatement strategy and, therefore, a “hotspot” approach aiming at reducing NOx emissions by local traffic measures is more effective to meet European air quality standards. 相似文献
6.
《国际环境与污染杂志》2011,35(1):71-89
Seasonal evolution of ozone (O3) and its nitrogen precursors (NO, NO2) in downtown Sfax (Tunisia) was monitored. Nitrogen oxides are shown to be closely related to local vehicle sources. Seasonal ozone levels, however, are shown to be dependent on regional meteorological conditions. High ozone levels are due to the effect of anticyclones and stratosphere intrusions (cut-off lows). Low levels are associated with cyclonic conditions of small vertical range of motion. Other than these particular conditions, ozone levels are shown to be relatively higher in fall and winter seasons, characterised by a very steady atmosphere. Overall, the examined meteorological conditions, the ozone concentrations observed in downtown Sfax are characterised by clear day/night cycles, which can be explained by the significant ventilation of the region. 相似文献
7.
Gaffney JS Marley NA Cunningham MM Kotamarthi VR 《Journal of the Air & Waste Management Association (1995)》2005,55(8):1228-1235
Natural radionuclides have been proposed as a means of assessing the transport of ozone (O3) and aerosols in the troposphere. Beryllium-7 (7Be) is produced in the upper troposphere and lower stratosphere by the interaction of cosmogenic particles with atmospheric nitrogen and oxygen. 7Be has a 53.29-day half-life (478 keV gamma) and is known to attach to fine particles in the atmosphere once it is formed. It has been suggested that O3 from aloft can be transported into rural and urban regions during stratospheric-tropospheric folding events leading to increased background levels of O3 at the surface. 7Be can be used as a tracer of upper atmospheric air parcels and the O3 associated with them. Aerosol samples with a 2.5-microm cutoff were collected during 12-hr cycles (day/night) for a 30-day period at Deer Park, TX, near Houston, in August-September of 2000, and at Waddell, AZ, near Phoenix, in June-July of 2001. A comparison of 7Be levels with 12-hr O3 averages and maxima shows little correlation. Comparison of nighttime and daytime O3 levels indicate that during the day, when mixing is anticipated to be higher, the correlation of 7Be with O3 in Houston is approximately twice that observed at night. This is consistent with mixing and with the anticipated loss of O3 by reaction with nitric oxide (NO) and dry deposition. At best, 30% of the O3 variance can be explained by the correlation with 7Be for Houston, less than that for Phoenix where no significant correlation was seen. This result is consistent with the intercept values obtained for 7Be correlations with either O3 24-hr averages or O3 12-hr maxima and is also in the range of the low O3 levels (25 ppb) observed at Deer Park during a tropical storm event where the O3 is attributable primarily to background air masses. That is, maximum background O3 level contributions from stratospheric sources aloft are estimated to be in the range of 15-30 ppb in the Houston, TX, and Phoenix, AZ, area, and levels above these are because of local tropospheric photochemical production. 相似文献
8.
《Atmospheric environment (Oxford, England : 1994)》1999,33(5):709-719
Multilayer perceptron (MLP) neural networks were trained to model hourly NOx and NO2 pollutant concentrations in Central London from basic hourly meteorological data. Results have shown that the models perform well when compared to previous attempts to model the same pollutants using regression based models. This work also illustrates that MLP neural networks are capable of resolving complex patterns of source emissions without any explicit external guidance. 相似文献
9.
Mariantonia M. Bencardino Nicola N. Pirrone Francesca F. Sprovieri 《Environmental science and pollution research international》2014,21(6):4044-4062
The Mediterranean basin, because of its semi-enclosed configuration, is one of the areas heavily affected by air pollutants. Despite implications on both human health and radiative budget involving an increasing interest, monitoring databases measuring air pollution directly over this area are yet relatively limited. Owing to this context, concentrations of fine (PM2.5) and coarse (PM2.5–10) particles along with other ancillary data, such as ozone levels and meteorological parameters, were measured during six cruise campaigns covering almost the whole Mediterranean basin. Elemental composition of both PM2.5 and PM2.5–10 was also determined to identify specific tracers for different classes of particles that can be found in the Mediterranean atmosphere. Outcomes resulting from the integration of a preliminary qualitative examination with a more quantitative analysis, based on receptor modelling, suggested that European continental influence, Saharan dust outbreaks, wildfire events, sea spray and fossil fuel combustion were the leading causes of the aerosol-ozone variations within the Mediterranean basin. Shipping emissions, consisting in both local harbours and maritime traffic across the basin, were also tested using the marker ratio of V/Ni. Peak values observed for coarse fraction have shown to be driven by the occurrence of African dust events. Considering the major influence of Continental pollution and wildfire events, the spatial variability resulted in larger fine particle concentrations and higher ozone levels over the Eastern Mediterranean side in comparison to the Western one. 相似文献
10.
Effects of ozone fumigation of Asclepias curassavica L. and A. syriaca L. on feeding preference, growth, development, and nutritional indices of monarch larvae were investigated in conjunction with changes in specific leaf metabolites. While foliar chemistry was quite variable, fumigation generally decreased sugars and proteins, and increased amino acids and phenolics in A. curassavica. Effects were similar in A. syriaca except that sugars were generally increased while amino acids were usually not affected. On A. curassavica, 3rd instar larvae preferred ozone-treated leaves while 4th instars showed no preference; conversely, on A. syriaca, 3rd instars showed no preference while 4th instars preferred control leaves. Relative growth rate and relative consumption rate of 5th instars were greater on fumigated plants of both species, but other nutritional indices were unaffected. Larvae developed more rapidly on intact fumigated plants of both species than on the respective controls. The results suggest that enhanced feeding stimulation may be the primary cause of the altered behavior and performance on ozone-fumigated plants. 相似文献
11.
Bonyoung Koo Chao-Jung Chien Gail Tonnesen Ralph Morris Jeremiah Johnson Tanarit Sakulyanontvittaya Piti Piyachaturawat Greg Yarwood 《Atmospheric environment (Oxford, England : 1994)》2010,44(19):2372-2382
Natural emissions adopted in current regional air quality modeling are updated to better describe natural background ozone and PM concentrations for North America. The revised natural emissions include organosulfur from the ocean, NO from lightning, sea salt, biogenic secondary organic aerosol (SOA) precursors, and pre-industrial levels of background methane. The model algorithm for SOA formation was also revised. Natural background ozone concentrations increase by up to 4 ppb in annual average over the southeastern US and Gulf of Mexico due to added NO from lightning while the revised biogenic emissions produced less ozone in the central and western US. Natural PM2.5 concentrations generally increased with the revised natural emissions. Future year (2018) simulations were conducted for several anthropogenic emission reduction scenarios to assess the impact of the revised natural emissions on anthropogenic emission control strategies. Overall, the revised natural emissions did not significantly alter the ozone responses to the emissions reductions in 2018. With revised natural emissions, ozone concentrations were slightly less sensitive to reducing NOx in the southeastern US than with the current natural emissions due to higher NO from lightning. The revised natural emissions have little impact on modeled PM2.5 responses to anthropogenic emission reductions. However, there are substantial uncertainties in current representations of natural sources in air quality models and we recommend that further study is needed to refine these representations. 相似文献
12.
13.
Mukerjee S Smith LA Norris GA Morandi MT Gonzales M Noble CA Neas LM Ozkaynak AH 《Journal of the Air & Waste Management Association (1995)》2004,54(3):307-319
This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO2) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO2 and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (< 5% relative standard deviation, RSD) were found for NO2 measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (> or = 77% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO2 samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs. However, except for toluene, OVM BTEX measurements generally exceeded their continuous counterparts with a mean bias of 5-10%. Although interpretation of the study results was limited due to small sample sizes, diffusion barrier influences caused by shelters that housed OVMs and differences in sampling heights between OVMs and auto-GC inlet may explain the overestimation. 相似文献
14.
《Atmospheric environment (Oxford, England : 1994)》2001,35(6):995-1000
Atmospheric CO2 concentrations were measured prior to dawn and in the middle of the afternoon at a height of 2 m above the ground along four transects through the metropolitan area of Phoenix, Arizona on 14 consecutive days in January 2000. The data revealed the existence of a strong but variable urban CO2 dome, which at one time exhibited a peak CO2 concentration at the center of the city that was 75% greater than that of the surrounding rural area. Mean city-center peak enhancements, however, were considerably lower, averaging 43% on weekdays and 38% on weekends; and averaged over the entire commercial sector of the city, they were lower still, registering 30% on weekdays and 23% on weekends. Over the surrounding residential areas, on the other hand, there are no weekday–weekend differences in boundary-layer CO2 concentration. Furthermore, because of enhanced vertical mixing during the day, near-surface CO2 concentrations in the afternoon are typically reduced from what they are prior to sunrise. This situation is additionally perturbed by the prevailing southwest-to-northeast flow of air at that time of day, which lowers afternoon CO2 concentrations on the southern and western edges of the city still more, as a consequence of the importation of pristine rural air. The southwest-to-northeast flow of air also sometimes totally compensates for the afternoon vertical-mixing-induced loss of CO2 from areas on the northern and eastern sides of the city, as a consequence of the northeastward advection of CO2 emanating from the central, southern and western sectors of the city. Hence, although complex, the nature of the urban CO2 dome of Phoenix, Arizona, is readily understandable in terms of basic meteorological phenomena and their interaction with human activities occurring at the land/air interface. 相似文献
15.
Gabriel Ibarra-Berastegi Ana Elías Elena Agirre Javier Uria 《Environmental science and pollution research international》2001,8(4):250-250
Conclusions The results are at least as good as those obtained with much more sophisticated models. Furthermore, the models can be easily
run on a simple PC. This approach may provide a good diagnostic network (as seen in Bilbao) with real-time, short-term prognostic
capabilities for a given location. The models have been built for Bilbao and are applicable only in this location. However,
using the same methodology, similar results could be obtained in other environments if a good diagnostic network is available.
The full paper is published in the Internet journal ‘Gate to EHS (Environmental and Health Science)’, in June 2001, and can
be called up and cited by way of the DOI:http://dx.doi.org/10.1065/ehs2001.06.009 相似文献
16.
17.
Mendoza-Dominguez A Wilkinson JG Yang YJ Russell AG 《Journal of the Air & Waste Management Association (1995)》2000,50(1):21-31
A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations. 相似文献
18.
Prediction of the vertical profile of ozone based on ground-level ozone observations and cloud cover
Kim GD Davis WT Miller TL 《Journal of the Air & Waste Management Association (1995)》2004,54(4):483-494
A number of statistical techniques have been used to develop models to predict high-elevation ozone (O3) concentrations for each discrete hour of day as a function of elevation based on ground-level O3 observations. The analyses evaluated the effect of exclusion/inclusion of cloud cover as a variable. It was found that a simple model, using the current maximum ground-level O3 concentration and no effect of cloud cover provided a reasonable prediction of the vertical profile of O3, based on data analyzed from O3 sites located in North Carolina and Tennessee. The simple model provided an approach that estimates the concentration of O3 as a function of elevation (up to 1800 m) based on the statistical results with a +/- 13.5 ppb prediction error, an R2 of 0.56, and an index of agreement, d1, of 0.66. The inclusion of cloud cover resulted in a slight improvement in the model over the simple regression model. The developed models, which consist of two matrices of 24 equations (one for each hour of day for clear to partly cloudy conditions and one for cloudy conditions), can be used to estimate the vertical O3 profile based on the inputs of the current day's 1-hr maximum ground-level O3 concentration and the level of cloud cover. 相似文献
19.
《Atmospheric environment(England)》1984,18(10):2281-2284
Sulfur Dioxide and an oxidant gas — air or NO2 — were bubbled through aqueous suspensions of both washed and unwashed carbon black as well as through samples of wash water, which contained whatever soluble species were originally present on the carbon, and high-purity water. The sulfate yields obtained showed the washed and unwashed carbon to be equally catalytic for the oxidation of SO2 to sulfate by both oxidants whereas little sulfate was generated in either the wash water or high-purity water in the absence of carbon. These results indicate that the sulfate yields produced in aqueous suspensions of the carbon studied are due to catalysis by the carbon particles rather than by soluble species dissolved from them. 相似文献
20.
Apeksha Aggarwal Durga Toshniwal 《Journal of the Air & Waste Management Association (1995)》2019,69(7):805-822
Owing to accurate future air quality estimates, need for detecting the anomalously high increase in concentration of pollutants cannot be adjourned. Plentiful approaches were proposed in the past to substantially determine the abnormal conditions, but most of the statistical approaches were computationally expensive and ignored the false alarm ratios. Thus, a hybrid of proximity- and clustering-based anomaly detection approaches to identify anomalies in the air quality data is suggested in this work. The Gaussian distribution property of the real-world data set is utilized further to segregate out anomalies. The results depicted twofold advantages of our approach, by efficient extraction of anomalies and with increased accuracy by reducing the number of false alarms. Specifically, the presence of NO2 concentration in air is investigated in this work, considering its constant increase over decades as well as its inevitable health risks. Furthermore, spatiotemporal segments with anomalously high NO2 concentrations for 14 residential, industrial, and commercial areas of five cities in India are extracted. To validate the results, a comparative analysis with existing approaches of anomaly detection and with two benchmark data sets is performed. Results showed that our method outperformed the existing methods of anomaly detection, when evaluated over metrics such as sensitivity, miss rate, and false alarms. Further, a detailed analysis of extracted anomalies and a detailed discussion about the factors responsible for such anomalies are presented in this work. This study is helpful in educating government and people about spatiotemporal, geographical, and economic conditions responsible for anomalously high NO2 concentrations in air.
Implications: Using our methodology, days with extremely high concentration of any pollutant in air, at any particular location, can be extracted. The reasons for such extremely high pollutant concentration on particular days of a year can be studied and preventive measures can be taken by the government. Thus, by identification of causes of anomalies, future similar events can be avoided. This would also help in people’s decision making in case such events occur in the future. 相似文献