首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a model for evaluating the mass-based concentrations of urban particulate matter. The basic model assumption is that local vehicular traffic is responsible for a substantial fraction of the street-level concentrations of both PM10 and NOx, either due to primary emissions or resuspension from street surfaces. The modelling system utilises the data from an air quality monitoring network in the Helsinki Metropolitan Area. We have determined linear relationships between the measured urban PM10 data against those of NOx in various urban surroundings, based on continuously measured hourly concentration values. The data was obtained from two stations in central Helsinki and one suburban station in the Helsinki Metropolitan Area during a period of 3 yr, from 1996 to 1998. The model also includes a treatment of the regional background concentrations, and resuspended particulate matter. The model performance was evaluated against the measured PM10 data from the above-mentioned three stations and from two other stations, using data that was measured in 1999. We used two alternative model versions, one based on separate correlation parameters (PM10 vs. NOx) for each station, and another based on parameters averaged over the stations considered. We analysed the agreement between the measured and predicted hourly concentration time series, utilising the values of the fractional bias (FB) and the so-called index of agreement (IA). As expected, the model predicts relatively well the yearly mean concentrations of PM10: the FB values range from −0.05 to +0.09. Model performance is also relatively good when predicting the yearly mean values that are classified separately for each hour of the day: the corresponding IA values range from 0.85 to 0.96. However, model performance is substantially worse in predicting the hourly time series of the year: the IA values using the station-specific parameters range from 0.46 to 0.65. The model was applied in evaluating the yearly average spatial concentration distribution of PM10 in central Helsinki, based on the corresponding modelled NOx concentrations. With re-evaluation of a few parameters that can be determined empirically, the model could be evaluated, and most probably applied, in other urban areas as well.  相似文献   

2.
Possible effects of climate change on air quality are studied for two urban sites in the UK, London and Glasgow. Hourly meteorological data were obtained from climate simulations for two periods representing the current climate and a plausible late 21st century climate. Of the meteorological quantities relevant to air quality, significant changes were found in temperature, specific humidity, wind speed, wind direction, cloud cover, solar radiation, surface sensible heat flux and precipitation. Using these data, dispersion estimates were made for a variety of single sources and some significant changes in environmental impact were found in the future climate. In addition, estimates for future background concentrations of NOx, NO2, ozone and PM10 upwind of London and Glasgow were made using the meteorological data in a statistical model. These showed falls in NOx and increases in ozone for London, while a fall in NO2 was the largest percentage change for Glasgow. Other changes were small. With these background estimates, annual-average concentrations of NOx, NO2, ozone and PM10 were estimated within the two urban areas. For London, results averaged over a number of sites showed a fall in NOx and a rise in ozone, but only small changes in NO2 and PM10. For Glasgow, the changes in all four chemical species were small. Large-scale background ozone values from a global chemical transport model are also presented. These show a decrease in background ozone due to climate change. To assess the net impact of both large scale and local processes will require models which treat all relevant scales.  相似文献   

3.
The extent of the exceedance of the EU limit values for nitrogen dioxide (NO2) and particulate matter (PM10) concentrations within the Netherlands is expected to decrease significantly, in the coming years. Whether limit values will actually be exceeded, in the next decade, depends not only on European, national and local policies, but also on the effects of inevitable interannual meteorological fluctuations. An analysis of model calculations and measurements yields variations (1 sigma) in the annual average concentration of about 5% for NO2 and 9% for PM10, due to meteorological fluctuations. These deviations from long-term average concentrations affect assessments of future levels, set against limit values. For instance, an NO2 concentration of 39 μg m?3, estimated for a given year with long-term average meteorology, indicates that it is likely (chance >66%) that the limit value of 40 μg m?3 will not be exceeded in that particular year. At the same time, the estimation also indicates, for example, that this situation is unlikely (change <33%) to continue for three years in a row. However, with an estimated concentration of 38 μg m?3, it is likely that the limit value will not be exceeded for three years in a row. The limit value for the daily average PM10 concentration is equivalent to an annual average of about 32 μg m?3. This threshold is unlikely to be exceeded for three years in a row, when an annual average concentration of 29 μg m?3 is estimated. Interannual variations in concentrations of NO2 and PM10 are linked to large-scale meteorological fluctuations. Therefore, similar results can be expected for other European countries.  相似文献   

4.
A receptor model for predicting future PM10 concentrations has been developed within the framework of the UK Airborne Particles Expert Group and applied during the recently completed review of the UK National Air Quality Strategy. The model uses a combination of measured PM10, oxides of nitrogen and particulate sulphate concentrations to provide daily estimates of the contributions to total particle concentrations from primary combustion, secondary and other (generally coarse) particle sources. Projections of past and future concentrations of PM10 are estimated by applying appropriate reductions to the current concentrations of the three components based on an understanding of the likely impact of current policies on future levels. Projections have been derived from 1996, 1997 and 1998 monitoring data and compared with UK national air quality objectives and European Union limit values. One of the key uncertainties within the receptor modelling method is the assignment of the residual PM10, remaining after the assignment of primary combustion and secondary particle contributions, to the ‘other’ particle fraction. An examination of the difference between measured PM10 and PM2.5 concentrations confirms our assignment of the bulk of this residual to coarse particles. Projections based on 1996 monitoring data are the highest and those based on 1998 monitoring data are the lowest. Whilst there is considerable difference between these projections they are consistent with measured concentrations for previous years. All three projections suggest that with current agreed policies the EU annual mean limit value will be achieved. The 24-h mean limit value is projected to be achievable when projections are derived from 1997 and 1998 data, but not from 1996 data. All three projections suggest that with current agreed policies the central London site will not achieve the provisional 1997 UK National Air Quality Strategy objective.  相似文献   

5.
The European Union has set limit values for PM10 to be met in 2005. At Marylebone Road, London, where the traffic is heavy, the daily limit value of 50 μg m−3 is exceeded more than 35 times a year. A total of 185 days with daily PM10 concentrations exceeding the limit value of 50 μg m−3 measured between January 2002 and December 2004 (data capture of 89.5%) are discussed in this paper. These exceedences were more frequent in early spring and in autumn. Concentrations have been disaggregated into regional, urban (background) and local (street) contributions. Most of the episodes of gravimetric PM10 above the limit value were associated with a high regional background and very often the regional contribution dominated the PM10 mass. The secondary aerosol (especially the particulate nitrate) made a major contribution to the PM10 load. These situations were frequently observed when air masses came from the European mainland (showing that both emissions from the UK and other EU countries contributed to the exceedences), and less frequently with maritime air masses that have stagnated over the UK (showing that emissions from the UK alone less frequently contributed to the high regional background). However, the higher frequency of episodes breaching the limit value at the roadside site than at the rural site and the higher frequency of PM10 concentrations above the limit value on weekdays show that the high regional contributions are additional to local and urban emissions. Local emissions mainly due to traffic were the second important contributor to the exceedences, while the contribution of the urban background of London was less important than the local emissions and the regional background. Applying the pragmatic mass closure model of Harrison et al. [2003. A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmospheric Environment 37, 4927–4933], revealed that the regional aerosol is comprised very largely of ammonium nitrate and sulphate and secondary organic aerosol. Findings suggest that international abatement of secondary aerosol precursors may be the most effective measure to fulfil the requirements of the European Directive 1999/30/CE by lowering the regional background.  相似文献   

6.
On 17th February 2003, a congestion charging scheme (CCS), operating Monday–Friday, 07:00–18:00, was introduced in central London along with a programme of traffic management measures. We investigated the potential impact of the introduction of the CCS on measured pollutant concentrations (oxides of nitrogen (NOX, NO and NO2), particles with a median diameter less than 10 microns (PM10), carbon monoxide (CO) and ozone (O3)) measured at roadside and background monitoring sites across Greater London. Temporal changes in pollution concentrations within the congestion charging zone were compared to changes, over the same time period, at monitors unlikely to be affected by the CCS (the control zone) and in the boundary zone between the two. Similar analyses were done for CCS hours during weekends (when the CCS was not operating).Based on the single roadside monitor with the CCS Zone, it was not possible to identify any relative changes in pollution concentrations associated with the introduction of the scheme. However, using background monitors, there was good evidence for a decrease in NO and increases in NO2 and O3 relative to the control zone. There was little change in background concentrations of NOX. There was also evidence of relative reductions in PM10 and CO. Similar changes were observed during the same hours in weekends when the scheme was not operating.The causal attribution of these changes to the CCS per se is not appropriate since the scheme was introduced concurrently with other traffic and emissions interventions which might have had a more concentrated effect in central London. This study provides important pointers for study design and data requirements for the evaluation of similar schemes in terms of air quality. It also shows that results may be unexpected and that the overall effect on toxicity may not be entirely favourable.  相似文献   

7.
We report on the analysis of contributions from road traffic emissions to fine particulate matter (PM2.5) concentrations within London for 2008 with the OSCAR Air Quality Assessment System. A spatiotemporal evaluation of the OSCAR system has been conducted with measurements from the London air quality network (LAQN). For the predicted and measured hourly time series of concentrations at 18 sites in London, the medians of correlation, mean absolute error, index of agreement, and factor of two (FAC2) of all stations were 0.80, 4.1 μg/m3, 0.86, and 74%, respectively. Spatial evaluation of modeled and observed annual mean concentrations also showed a fairly good agreement, with all the values falling within the FAC2 range. According to model predictions, the urban increment (including the contributions from urban traffic and other urban sources) was evaluated to be on the average 18%, 33%, 39%, and 43% of the total PM2.5 in suburban environments, in the urban background, near roads, and near busy roads, respectively. However, the highest values of the urban traffic increment can be around 50% of the total PM2.5 concentrations near motorways and major roads. The total concentrations (including regional background, and the contributions from urban traffic and other urban sources) can therefore be almost three times the regional background. The total urban increment close to busy roads was around 7–8 μg/m3, in which the estimated traffic contribution is more than 2 μg/m3. On the average, urban traffic contributes approximately 1 μg/m3 of PM2.5 to the urban background across London. According to modeling, approximately two-thirds of the traffic increment originated from exhaust emissions and most of the rest was due to brake and tire wear.
Implications: The urban increment and traffic contribution to the total PM2.5 are significant and spatially heterogeneous across London. The highly heterogeneous distribution of PM2.5 hence requires detailed modeling studies to be carried out at high spatial resolution, which can be particularly important for exposure and health impact assessment. This type of information can be used to quantify health impacts resulting from specific sources of PM2.5 such as traffic emissions, to aid city and national decision makers when formulating pollution control strategies.  相似文献   

8.
A generalised additive modelling (GAM) approach is used to model daily concentrations of nitrogen oxides (NOX), nitrogen dioxide (NO2), carbon monoxide (CO), benzene and 1,3-butadiene at a busy street canyon location in central London. The models were developed for the period July 1998–June 2005 using appropriate meteorological and road traffic covariates. For all models, the complex and localised wind-flow patterns resulting from the street canyon location of the monitoring site, which can be difficult to model deterministically, have a large influence on the model predictions. It is shown that GAMs built using simple covariates explain a large amount of the daily variation for these pollutants (mean r2=0.86). It is found that concentrations of benzene and 1,3-butadiene have declined in line with detailed calculations of emissions trends, with some evidence to suggest that reductions in benzene have been greater than estimated reductions in emissions. Although measured concentrations of NOX have declined from 1998 to 2005, much of the decline appears to be associated with reductions in overall traffic and meteorological factors rather than reduced emissions of NOX. Unadjusted NOX trends show a 28.6% reduction (95% confidence interval from 21.2% to 35.8%) from 1998 to 2005, whereas meteorologically adjusted trends show a 19.3% decline (95% confidence interval from 14.8% to 23.5%) over this period. Analysis shows that there were a higher number of occasions in the early part of the time series that led to strong recirculation of exhaust emissions and higher NOX concentrations at this location, thus affecting observed trends in concentration.  相似文献   

9.
Trends in vehicular emissions in China's mega cities from 1995 to 2005   总被引:1,自引:0,他引:1  
Multiyear inventories of vehicular emissions in Beijing, Shanghai and Guangzhou from 1995 through 2005 have been developed in this paper to study the vehicle emissions trends in China's mega cities during the past decade. The results show that the vehicular emissions of CO, HC, NOx and PM10 have begun to slow their growth rates and perhaps even to decline in recent years due to the implementation of measures to control vehicular emissions in these cities. However, vehicular CO2 emissions have substantially increased and still continue to grow due to little fuel economy improvement. Passenger cars and large vehicles (including heavy duty trucks and buses) are the major sources of vehicular CO2 and CO emissions while large vehicles were responsible for nearly 70% and 80% of the vehicular NOx and PM10 emissions in these mega cities. Motorcycles are also important contributors to vehicular emissions in Guangzhou and Shanghai.  相似文献   

10.
Traffic-generated fugitive dust on gravel roads impairs visibility and deposits on the adjacent environment. Particulate matter smaller than 10 μm in diameter (PM10) is also associated with human health problems. Dust emission strength depends on the composition of granular material, road moisture, relative humidity, local climate (precipitation, wind velocity, etc.), and vehicle characteristics.The objectives of this study were to develop a reliable and rapid mobile methodology to measure dust concentrations on gravel roads, evaluate the precision and repeatability of the methodology and correspondence with the currently used visual assessment technique. Downwind horizontal diffusion was studied to evaluate the risk of exceeding the maximum allowed particulate matter concentration in ambient air near gravel roads according to European Council Directive [European Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Official Journal of the European Communities. L163/41.].A TSI DustTrak Aerosol Monitor was mounted on an estate car travelling along test sections treated with various dust suppressants. Measured PM10 concentrations were compared to visual assessments performed at the same time. Airborne particles were collected in filters mounted behind the vehicle to compare the whole dust fraction with the PM10 concentration. For measuring the horizontal diffusion, DustTraks were placed at various distances downwind of a dusty road section.The mobile methodology was vehicle and speed dependent but not driver dependent with pre-specified driving behaviours. A high linear correlation between PM10 of different vehicles makes relative measurements of dust concentrations possible. The methodology gives continuous data series, mobility, and easy handling and provides fast, reliable and inexpensive measurements for estimating road conditions to make road maintenance more efficient.Good correlations between measured PM10-values, visually assessed dust generation and dust collected in filters were obtained. PM10 seems to be correlated to the whole dust fraction that impairs visibility on gravel roads.A decay in PM10 concentration as a function of distance from the road was observed. Measured particles principally did not travel further than 45 m from the road. The risk of exceeding the PM10 concentration stated in the EC-directive seems small.  相似文献   

11.
The paper presents a comprehensive model evaluation focusing on the meaning and shortcomings of accuracy measures used to determine model quality according to European Union (EU) directives on air quality. European wide simulations employing the chemical transport model REM-CALGRID for the year 2002 were compared with O3, NO2, SO2 and PM10 observations of the German measurement network.The EU model quality objective, which is based on maximum relative errors, tends to penalise (i) the overestimation of very low measured concentrations in the case of annual averages and (ii) the underestimation of extremely high measured concentrations in the case of short-term values. As a more robust alternative, a model accuracy measure is presented, which corresponds to the allowed number of exceedances of the corresponding short-term air quality limit values.The influence of the spatial heterogeneity of the observations in relation to the spatial resolution of the model is investigated by spatial averaging of observation data. Because of this heterogeneity, any model with a 25 km resolution would fail to simulate about 20% of all NO2 and SO2 stations and 5–10% of all O3 and PM10 stations in Germany according to the EU model quality objectives for short-term averages.  相似文献   

12.
ABSTRACT

Chile is a fast-growing country with important industrial activities near urban areas. In this study, the mass and elemental concentrations of PM10 and PM2.5 were measured in five major Chilean urban areas. Samples of particles with diameter less than 10 um (PM10) and 2.5 um (PM2.5) were collected in 1998 in Iquique (northern Chile), Valparaiso, Vina del Mar, Rancagua (central Chile), and Temuco (southern Chile). Both PM10 and PM25 annual mean concentrations (PM10: 56.9-77.6 u,g/m3; PM25: 22.4-42.6 u.g/m3) were significantly higher than the corresponding European Union (EU) and U.S. Environmental Protection Agency (EPA) air quality standards. Moreover, the 24-hr PM10 and PM25 U.S. standards were exceeded infrequently for some of the cities (Rancagua and Valparaiso).  相似文献   

13.
In 2007, the European limit values for annual average nitrogen dioxide (NO2) concentration and for daily average particulate matter (PM10) concentration were exceeded along motorways and city streets in the Netherlands. While the road length along which the exceedance occurred is uncertain, model calculations show that the NO2 concentration was likely to have been exceeded (chance >66%) along about 300 km and PM10 concentration along about 75 km. In addition, the limit values were exceeded ‘about as likely as not’ (chance 33–66%) along a total of 1000 km for NO2 and 1600 km for PM10. PM10 and NO2 concentrations must be below the limit values everywhere in Europe, ultimately by 2011 and 2015, respectively. Since estimates of future local concentrations have an uncertainty of about 15–20%, no absolute statements can be made whether concentrations will be below the limit values within the specified time. Model calculations accounting for the effects of current and proposed national and European legislation, and using average meteorology for large-scale and local traffic contributions show strong decreases in likely limit value exceedances in the Netherlands. However, limit value exceedances are still possible (chance >33%) along about 350 km for PM10 by 2011, and about 150 km for NO2, by 2015. These possible exceedances depend not only on the uncertainties and on national and European policies and their effectiveness, but also on contributions by specific additional local measures. The Netherlands Government has proposed a plan, which includes local measures to meet the limit values everywhere, in time. Although not assessed here due to their specific character, such local measures could reduce exceedances. As the effects of local measures and estimates of concentrations are uncertain, continuous monitoring – possibly together with additional measures – will be needed to adhere to the limit values.  相似文献   

14.
冬季沈阳市典型源排放PM_(10)浓度分布模拟分析   总被引:2,自引:0,他引:2  
选取沈阳市7个典型的大气污染源2006年12月~2007年2月的PM10排放浓度资料,利用CALPUFF对PM10浓度月平均分布做模拟分析。模拟结果分析表明:冬季月平均PM10浓度分布的范围与风场、地形有直接的关系。地势平坦、风速大时,污染物扩散范围大,污染物浓度小;地势不平、风速小时,污染物扩散范围小,污染物浓度大。1月份是沈阳市冬季月平均大气污染最严重的月份,污染物分布主要集中在市区的北部、东部和南部地区,东部地区大气污染最为严重。  相似文献   

15.
A modelling method has been developed to map PM10 and PM2.5 concentrations across the UK at background and roadside locations. Separate models have been calibrated using gravimetric measurements and Tapered Element Oscillating Microbalance instruments (TEOM) using source apportionments appropriate to the size fractions and sampling methods. Maps have been prepared for a base year of 2004 and predictions have been calculated for 2010 and 2020 on the basis of current policies. Comparisons of the modelling results with air quality regulations suggest that exceedences of the EU Daughter Directive stage 1 24-h limit value for PM10 at the roadside in 2004 will be largely eliminated by 2020. The concentration cap of 25 μg m−3 for PM2.5 proposed within the CAFÉ Directive is expected to be met at all locations. Projections for 2010 and 2020 suggest that the proposed exposure reduction (ER) target is likely to be considerably more stringent and require additional measures beyond current policies. Thus the model results suggest that the balance between the stringency of the concentration cap and the ER target in the proposed directive is appropriate. Measures to achieve greater reductions should therefore have the maximum public health benefit and air quality policy is not driven by the need to reduce concentrations at isolated ‘hotspots’.  相似文献   

16.
Measurements of air pollutants from a background site in central London are analysed. These comprise hourly data for CO, NO, NO2, O3, SO2 and PM10 from 1996 to 2008 and particle number count from 2001 to 2008. The data are analysed in terms of long-term trends, annual, weekly and diurnal cycles, and autocorrelation and cross-correlation functions. CO, NO and NO2 show a typical traffic-associated pattern with two daily peaks and lesser concentrations at the weekend. Particle number count and PM10 show a similar cycle, but with smaller amplitude. Ozone has an annual cycle with a maximum in May, influenced by the spring maximum in background ozone, but the diurnal and weekly cycles are dominated by losses through reaction with nitric oxide. Particle number count shows a minimum corresponding with maximum air temperatures in August, whereas the CO, NO NO2 and SO2 show a minimum in June/July. There is a lower particle count to NOx ratio at the background site compared to a central London kerbside site (Marylebone Road) and a seasonal pattern in particle count to NOx and PM10 ratios consistent with loss of nanoparticles by evaporation during atmospheric transport. Sulphur dioxide peaks in the morning in summer, but at midday in winter consistent with emissions from elevated sources mixing down from aloft as the diurnal mixed layer deepens. Implications for epidemiological studies of air quality and health are discussed. Sulphur dioxide, carbon monoxide, nitric oxide and nitrogen dioxide show clear downward trends over the measurement period, PM10 declines initially before levels stabilised, and ozone concentrations increased.  相似文献   

17.
A detailed physical and chemical characterisation of total suspended particles (TSP) in the highly industrialised city of Huelva (southwestern Spain) was carried out. The results evidenced a coarse grain-size prevalence (PM10 accounting for only 40% of TSP mass, 37 and 91 μg/m3, respectively). PM10 levels are in the usual range for urban background sites in Spain. The crustal, anthropogenic and marine components accounted for a mean of a 40%, 24% and 5% of bulk TSP, respectively. As expected from the industrial activities, relatively high PO43− and As levels for an urban site were detected. In addition to the crustal and marine components, source apportionment analysis revealed three additional emission sources influencing the levels and composition of TSP: (a) a petrochemical source, (b) a mixed metallurgical-phosphate source, (c) and an unknown source (Sb and NO3).Due to the high local emissions, the mean TSP anthropogenic contribution (mostly PM10) obtained for all possible air mass transport scenarios reached 18–29 μg/m3. The 2010 annual EU PM10 limit value (20 μg/m3) would be exceeded by the anthropogenic load recorded for all the air mass transport scenarios, with the exception of the North Atlantic transport (only 15% of the sampling days). Under African air mass transport scenarios (20% of sampling days), the TSP crustal contribution reached near three times the local crustal contribution. It must be pointed out that this crustal input should diminish when sampling PM10 due to the dominant coarse size distribution of this type of particles.  相似文献   

18.
EU Directives stipulate that PM10 should be measured using the gravimetric reference method as laid out in EN12341 [CEN, 1998. Air Quality – Determination of the PM10 Fraction of Suspended Particulate Matter – Reference Method and Field Test Procedure to Demonstrate Reference Equivalence of Measurement Methods. European Committee for Standardisation], or an equivalent method as demonstrated using EC guidance [EC, 2005. Demonstration of Equivalence of Ambient Air Monitoring Methods. European Commission Working Group on Guidance for the Demonstration of Equivalence]. There is however a conflict between the requirement to measure PM10 using the gravimetric reference method and the need for rapid public reporting, and many member states, including the UK, rely on non-gravimetric techniques to measure PM10. In the UK the majority of PM10 measurements are made using the Tapered Element Oscillating Microbalance (TEOM), which does not meet the equivalence criteria [Harrison, D., 2006. UK Equivalence Programme for Monitoring of Particulate Matter. Defra, London]. The implied need to upgrade or replace TEOMs with an equivalent automated measurement technique has significant cost implications. The model described in this paper was based on analysis of daily mean measurements of PM10 by the Filter Dynamics Measurement System (FDMS) and the TEOM at UK sites. It uses the FDMS measurement of the volatile component of PM10 (referred to here as FDMS purge) to correct for differences in the sensitivity to volatile PM10 between the TEOM and the EU gravimetric reference method. The model equation for the correction of TEOM PM10 measurements is: TEOMVCM = TEOM ? 1.87 FDMS purge due to the regional homogeneity of volatile PM, the FDMS purge concentration may be measured at a site distant to the TEOM, allowing the possibility of using a single FDMS instrument to correct PM10 measurements made by several TEOMs in a defined geographical area. The model was assessed against the criteria for the EC Working Group's Guidance for the Demonstration of Equivalence of Ambient Air Monitoring Methods [EC, 2005. Demonstration of Equivalence of Ambient Air Monitoring Methods. European Commission Working Group on Guidance for the Demonstration of Equivalence]. The model satisfies the equivalence criteria using remote FDMS purge measurements for distances up to 200 km (in 22 out of 23 data sets). These data provide strong evidence that the model is a viable tool for correcting measurements from TEOM instruments on the national and local government networks.  相似文献   

19.
An impact related daily air quality index (DAQx), calculated for 15 air quality monitoring stations (traffic, background, and industry) in Belgium, France, Germany and Luxembourg, was compared to mesoscale atmospheric patterns between 2001 and 2007. Meteorological conditions were described by the Hess and Brezowsky synoptic weather classification system and gridded data of the EU FP6 ENSEMBLES project of total precipitation and mean surface temperature. DAQx values indicate sufficient to poor air quality in the urban area of Brussels and at urban traffic stations, as well as satisfactory air quality at the background stations. The air quality index refers to more than 90% to the presence of high PM10, O3 and NO2 concentrations. SO2 and CO play only a minor role. The investigation of weather regimes indicates that zonal and mixed cyclonic circulation regimes are associated with better air quality than meridional and anticyclonic weather regimes. In general, weather regimes with high daily precipitation lead to better air quality than dryer air masses because of lower contribution of PM10 to the air quality index. A trend analysis of weather regimes from 1978 to 2007 shows significant (α = 0.05) positive trends for weather classes associated with lower PM10 concentrations. The results of a case study at a German station examining the relationship between PM10 concentrations and local meteorological quantities (wind speed and precipitation) confirm the results of the regional analysis.  相似文献   

20.
Annual mean limits for NO2 concentrations have been set in the European Union, which will be most challenging to meet in large urban conurbations. In this paper, we discuss techniques that have been developed to predict current and future NO2 concentrations in London, utilising ambient data. Hourly average NOx (NO+NO2) and NO2 concentrations are used to calculate NOx frequency distributions. By defining relationships between the annual mean NOx and NO2 at different sites, it is possible to investigate different NOx reduction strategies. The application of the frequency distribution approach to monitoring sites in London shows that given the likely change in emissions by 2005, it is unlikely that much of central and inner London will meet the objective. The approaches used suggest that meeting the objective in central London will be the most challenging for policy makers requiring NOx concentrations as low as 30 ppb, compared with values closer to 36–40 ppb for outer London. Predictions for 2005 indicate that concentrations of NO2 up to 6 ppb in excess of the objective are likely in central London.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号