首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otolith microstructure and microchemistry were examined in juveniles of American (Anguilla rostrata) and European (A. anguilla) eels. Otolith increment width markedly increased from age 132 to 191 d (156 ± 18.9 d; mean ± SD) in A. rostrata and 163 to 235 d (198 ± 27.4 d; mean ± SD) in A. anguilla, both of which were coincident with drastic decreases in otolith Sr:Ca ratios, suggesting that metamorphosis from leptocephalus to glass eel began at those ages in each species. The duration of metamorphosis was estimated to be 18 to 52 d from otolith microstructure, for both species studied. Ages at recruitment were 171 to 252 d (206 ± 22.3 d; mean ± SD) in A. rostrata and 220 to 281 d (249 ± 22.6 d; mean ± SD) in A. anguilla. In these two species, positive linear relationships were found in ages between the beginning of metamorphosis and recruitment, suggesting that early metamorphosing larvae recruited at younger ages. Duration of the leptocephalus stage to recruitment in A. anguilla was about 40 d longer than that in A. rostrata. The geographical segregation between the two species in the Atlantic Ocean seems to be involved in the differences in the duration of the leptocephalus stage (age at metamorphosis). Received: 8 November 1999 / Accepted: 8 May 2000  相似文献   

2.
Otolith microstructure and microchemistry were examined in juveniles of Australasian shortfinned eel, Anguilla australis, from Australia and New Zealand. Patterns in otolith increment widths were similar in these two stocks. A marked increase in otolith increment width was found from age 138 to 198 d (mean ± SD: 164 ± 18.6 d) from Australia, 161 to 208 d (185 ± 17.3 d) from the western coast of New Zealand and 161 to 211 d (187 ± 18.9 d) from the eastern coast. These changes coincided with a drastic decrease in otolith Sr:Ca ratios, suggesting that metamorphosis began at these ages in each species. The duration of metamorphosis estimated from otolith microstructure was the same in the different stocks, 17 to 41 d (mean ± SD: 27 ± 5.4 d). Ages at recruitment were 186 to 239 d (mean ± SD: 208 ± 17.4 d) from Australia, 214 to 263 d (232 ± 19.8 d) from the western coast of New Zealand and 208 to 266 d (237 ± 20.0 d) from the eastern coast. There was a significant difference in the age between the Australian stock and the two stocks from New Zealand. No significant difference was found in the age between the latter two stocks. The difference in the period for the recruitment between Australian and New Zealand stocks seems to reflect their geographical separation. Received: 1 March 1999 / Accepted: 19 July 1999  相似文献   

3.
Otolith microstructure and chemical composition (Sr:Ca ratios) of the European conger eel (Conger conger) were examined during the larval developmental stages by scanning electron microscopy and wavelength dispersive spectrometer. Back-calculated hatching dates from the otolith microstructure of the developing leptocephali indicate a protracted spawning season from December to June. The early age of our developing specimens captured south of the Azores Islands suggests that the conger eel has another spawning area closer to Azores than the Mediterranean. Otolith increment width, which was relatively constant and narrow in the developing leptocephalus stage, increased sharply at age 170-250 days. Sr:Ca ratios in the otolith, which increased during the developing leptocephalus stage, showed a rapid drop coinciding with the increase in increment width. These coincidental changes were regarded as the onset of metamorphosis for this species. A close linear relationship between the age at metamorphosis and otolith growth rate indicates that the faster-growing larvae metamorphose earlier, suggesting that somatic growth should play an important role in the timing of metamorphosis. As shown in earlier work, the existence of an otolith marginal zone with unclear rings during metamorphosis prevents an accurate estimate of the larval stage duration of this species.  相似文献   

4.
Strontium (Sr) and calcium (Ca) contents in the otoliths of yellow and silver European eels [Anguilla anguilla (L.)] collected from coastal waters of the Baltic Sea and a freshwater lake in Sweden were examined by wavelength dispersive X-ray spectrometry with an electron microprobe. The mean Sr/Ca ratios from elver check to otolith edge were significantly higher for the eels from coastal waters (5.39 ± 1.09‰) than for those from the lake (0.71 ± 0.89‰). The evidence indicates that European eels in the Baltic Sea do not necessarily migrate into freshwater streams during the growth phase. Received: 30 September 1999 / Accepted: 6 April 2000  相似文献   

5.
Content ratios of strontium (Sr) to calcium (Ca) in the otolith of Conger myriaster metamorphosing leptocephali and elvers increased with increasing increment number from the core to the 110th increment and subsequently decreased. The otolith region from the 110th increment to the edge corresponded to the metamorphic stage. The Sr:Ca ratios in otolith edges of metamorphosing leptocephali were inversely related to metamorphic stage, suggesting that the changes in otolith Sr:Ca ratios were influenced by some physiological factor(s) rather than by environmental factors. Sr concentration in leptocephalus somatic tissues was high and decreased as metamorphosis progressed until the late metamorphic stage when the preanal myomere to total myomere ratio was 0.4. Ca concentration was constant throughout ontogenesis. Body Sr:Ca ratios markedly decreased as metamorphosis progressed. Decrease in somatic Sr concentration and the consequent decrease in body Sr:Ca ratios seemed to be associated with the breakdown of glycosaminoglycan (GAG) in gelatinous matrix, which is the major constituent of soft tissue in leptocephali. Catabolism of GAG may also cause a decrease in otolith Sr:Ca ratios during metamorphosis. In leptocephalus otoliths, Sr:Ca ratios may change in association with the synthesis and breakdown of GAGs during ontogeny. Received: 29 November 1996 / Accepted: 6 January 1997  相似文献   

6.
In order to understand the reproductive contribution among migratory types in the Japanese eel, Anguilla japonica, otolith strontium (Sr) and calcium (Ca) concentrations by X-ray electron microprobe analysis were examined for 37 silver eels collected in Kii Channel off Shikoku Island during the spawning migration season. The wide range of otolith Sr:Ca ratios indicated that the habitat use of A. japonica was not obligatory but facultative among fresh, brackish and marine waters during their growth phases after recruitment to the coastal areas as glass eels. Three migratory types, which were categorized as river eels, estuarine eels and sea eels were found. The estuarine eels were dominant (59%), followed by sea eels (22%) and river eels (19%). The low proportion of river eels from the spawning migration season suggested that the estuarine and sea eels inhabiting the nearby coastal areas might make a larger reproductive contribution to the next generation in this area.  相似文献   

7.
Microstructure of settlement-marks in the otoliths of tropical reef fishes   总被引:6,自引:0,他引:6  
The morphology and ultrastructure of the otolith settlement-mark was examined in 44 tropical reef-fish species spanning nine families. A classification scheme based on similar otolith characteristics is presented. Three major categories are identified based on changes in increment width and optical qualities of the settlement-mark. Of the 44 species examined, 39 possessed “abrupt” settlement-marks (Type I) characterised by a rapid decrease in increment width (up to 50% reduction) over settlement. Type I settlement-marks were found in all nine families examined. The 39 species spanned the whole range of possible larval durations (Pomacentrus moluccensis, 15 d ± 0 SE; Naso hexacanthus, 91.2 d ± 2.97 SE). Four of the 44 species possessed “zonal” settlement-marks (Type II), featuring a band of increments that are wider than pre-settlement increments. Species in this category are the labrids Corisaygula, Thalassoma bifasciatum, T. lunare and an unidentified acanthurid (Acanthurus sp. 2). One species of acanthurid (N. brevirostris) possessed a “gradual” settlement-mark (Type III), manifest as a gradual decrease in increment width during the settlement period. A possible fourth type was identified from the literature. Gnatholepis thompsoni and Coryphopterus glaucofraenum possessed a settlement-mark with increment widths that increased post-settlement. Available data suggest a poor relationship between the structure of the settlement-mark and the magnitude of metamorphosis (previously reported as internal and external morphological change). Evidence suggests that the increment profile over early development and the increment transitions associated with the settlement event are taxon-specific and may enable late-larval stage fishes to be identified to species level. Received: 21 May 1997 / Accepted: 3 February 1999  相似文献   

8.
The early life history of the American conger eel, Conger oceanicus, was studied using otolith microstructure and chemical composition in metamorphosing leptocephali collected from New Jersey estuarine waters. The age of leptocephali was estimated by counting daily growth increments. Age of early metamorphosing leptocephali at recruitment to the estuary ranged from 155 to 183 days, indicating that migration of conger eel leptocephali from their oceanic spawning ground to the estuary requires 5–6 months. Back-calculated hatching dates suggest that the spawning season lasted 3 months, from late October to mid-December. However, in the late metamorphic leptocephali, the presence of an unclear peripheral zone in the otolith prevents the accurate estimation of the larval stage duration. The calcium content was almost constant throughout the otoliths. Both strontium and Sr:Ca ratios increased with age, but dramatically decreased at age 70–120 days. The otolith increment width also showed a marked increase at the same ages, indicating the onset of metamorphosis. A negative correlation between age at metamorphosis and otolith growth rate indicates that faster growing leptocephali arrive at the estuary earlier than slower growing ones. A close relationship was also found between age at recruitment and age at metamorphosis, suggesting that individuals that metamorphosed earlier were recruited to the estuary at a younger age. This larval migration pattern appears to be similar among anguilliform fishes.Communicated by S.A. Poulet, Roscoff  相似文献   

9.
N. Chino  T. Arai 《Marine Biology》2010,157(5):1075-1081
In order to understand the migratory history and habitat use of the tropical anguillid eels Anguilla celebesensis, A. marmorata, and A. bicolor bicolor, the otolith strontium (Sr) and calcium (Ca) concentrations were examined for eels collected in Indonesian waters. In A. bicolor bicolor collected in a lagoon, the change in Sr:Ca ratios outside the high Sr:Ca core generally indicated two patterns of habitat residence: (1) constant living in either brackish or sea waters with no freshwater life (25%) and (2) habitat shifts from fresh water to brackish or sea waters (75%). No A. bicolor bicolor had a general life history as a freshwater resident. A. celebesensis and A. marmorata from the uppermost freshwater lake showed freshwater life history patterns. The wide range of otolith Sr:Ca ratios in A. bicolor bicolor indicated that the habitat use of this tropical eel was facultative among fresh, brackish, and marine waters during the growth phase after recruitment to coastal areas similar to that for temperate eels. Thus, the migration of anguillid eels into fresh water is clearly not an obligatory.  相似文献   

10.
This study reviewed literature on spawning times for three north temperate species of anguillid eels estimated by sampling for small leptocephali (larvae) at sea and for several temperate and tropical species by back-calculating from putative daily ages derived from otolith increment analysis of glass eels that recruited to coastal waters. Estimates from otoliths of European eels, Anguilla anguilla, American eels, Anguilla rostrata, and Japanese eels, Anguilla japonica, imply much more protracted spawning seasons than are indicated by sampling at sea during various times of year. European eels are inferred to spawn year-round from otolith analysis, but the smallest, recently hatched leptocephali are found only in late winter and spring. From otoliths, the spawning times of these three species are all estimated to occur much later in the year than when small leptocephali are found at sea, indicating that ages appear to be underestimated. For these and other temperate and tropical eels, there are inconsistencies in assigned ages among various studies, which are most extreme for the European eel. This species has the longest larval migration and often has an opaque zone in the glass eels’ otoliths where it is difficult to discern growth increments. These inconsistencies suggest that interpretation of otolith growth increments is incorrect at least in some studies, and the apparently consistent mismatch between otolith and sea-sampling studies suggests that increments may not always be formed at some period during the unusual early life history of anguillids. Because daily increments may be formed in eels during most of their early life history, future research is needed to determine the cause of the mismatch of glass eel aging studies and the apparent spawning times of eels offshore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
James D. McCleaveEmail:
  相似文献   

11.
Strontium to calcium ratios were observed along longitudinal sections of statoliths of nine neon flying squid, Ommastrephes bartrami (LeSueur, 1821), including three mature females (422 to 454 mm mantle length, ML; 207 to 306 d old) obtained from the North Pacific (27–35°N; 144–150°E) during winter and six immature males and females (187 to 226 mm ML; 126 to 164 d old) collected from 39°N; 145°E and 39°N; 169°W during summer. The distances between the nucleus (core) and the edge of the dorsal dome were approximately 660 to 690 μm in mature females and 450 to 510 μm in the immature squid. Sr/Ca ratios were determined at intervals of 30 μm between the nucleus and edge of the dorsal dome. Sr/Ca ratios were higher in areas near the nuclei and peripheral portions of the dorsal dome than in the middle portions of the statoliths (270 to 420 μm from the nuclei, corresponding to ages of 60 to 90 d) in mature females; thus a U-shaped pattern was evident. Sr/Ca ratios in the six immature squid decreased from nucleus to the dorsal dome; in three squid the ratios slightly increased toward the dorsal dome edge. The observed Sr/Ca ratios in immature squid were considered to represent younger portions of the U-shaped pattern. In the present study we discuss this pattern in relation to environmental and biological conditions of O. bartrami, which undertakes seasonal migrations between spawning grounds in the Subtropical Domain and feeding grounds in the Subarctic Domain and Transitional Zone in the North Pacific Ocean. Although Sr/Ca ratios are potentially affected by ambient water temperature and ontogenetic conditions, including somatic growth and statolith growth, it was impossible to evaluate each environmental and biological effect separately, as variations in these factors are complicated and effects could be interdependent. Received: 11 April 1997 / Accepted: 27 December 1997  相似文献   

12.
Diadromous fish often enter freshwater directly from seawater via fish ladders or channels built in estuarine dams. The oxygen consumption rates (OCR) of glass eel, Anguilla japonica, were determined using an automatic intermittent flow respirometer under various salinity and temperature regimes to physiologically explain this direct movement. The endogenous rhythm of the OCR in wild glass eels, freshly collected from estuaries, was nearly synchronous with the tidal pattern at the estuarine collection site. When the salinity was changed from 20 psu (12°C) at a constant temperature to that of freshwater, the OCR of the glass eels decreased by 21.6±7.0% (mean ± SD) (P<0.05), showing a dampened rhythm for about 48 h. After this period of impediment, the glass eels resumed normal metabolic activity. Direct migration from seawater to freshwater under constant temperature would result in a severe physiological stress for these glass eels for about two days. When the glass eels were exposed to a cyclic change in water temperature of 2°C 26 h−1, as they encounter in estuaries, and then were introduced to freshwater abruptly, the OCR rhythm corresponded to the cyclic changes in water temperature after exposure to freshwater. Under these conditions, the mean OCR of the glass eels had a small difference before and after exposure to freshwater. These data explained how glass eels can directly move from sea water into the freshwater without any apparent metabolic stress in the estuaries showing cyclic change in water temperature (Δt=2°C).  相似文献   

13.
Leptocephali of the widely distributed tropical marine eels of the genus Kaupichthys (family Chlopsidae) were collected around Sulawesi Island during a sampling survey in the Indonesian Seas in late September and early October 2002, and the otolith microstructure of 24 of the 59 specimens captured was examined to learn about the larval growth rates and spawning times of these small sized eels. Leptocephali ranging in size from 25 to 60 mm were collected in Makassar Strait and the Celebes Sea, but they were most abundant in the semi-enclosed Tomini Bay of northeast Sulawesi Island. The Kaupichthys leptocephali examined had 39–161 otolith growth increments. Their back-calculated hatching dates indicated that five age groups were present and each group appeared to have been spawned around the full moon of previous months. Average growth rate estimates of the first two age groups were 0.65 and 0.54 mm/day for the 27.4–30.4 and 37.6–45.6 mm age classes. The growth rates of the oldest three age groups (52.0–60.8 mm) appeared to have slowed down after they reached their approximate maximum size. An increase in increment widths at the outer margin of the otoliths of those larger than 53 mm suggested that the process of metamorphosis had begun even though there were few external morphological changes indicating metamorphosis. It is hypothesized that chlopsid leptocephali have an unusually short gut that may not need to move forward during early metamorphosis. The presence of four age classes in Tomini Bay suggests that the Togian Islands region may be productive habitats for Kaupichthys juveniles and adults.  相似文献   

14.
In order to examine the early life-history characteristics of tropical eels, otolith microstructure and microchemistry were examined in leptocephali of Anguilla bicolor pacifica (27.6-54.1 mm TL, n=20) and A. marmorata (22.0-47.3 mm TL, n=8) collected during a cruise in the western Pacific. A. bicolor pacifica occurred between 10°N and 15°N in the west and between 5°S and 10°N farther to the east. A. marmorata also occurred in two different latitudinal ranges in the Northern (15-16°N) and Southern Hemispheres (3-15°S) of the western Pacific. The increment widths in the otoliths of these leptocephali increased between the hatch check (0 days) and about an age of 30 days in both species, and then gradually decreased toward the otolith edge. Otolith Sr:Ca ratios showed a gradual increase from the otolith center to the edge. The ages of A. bicolor pacifica and A. marmorata leptocephali ranged from 40 to 128 days and from 38 to 99 days, respectively. Growth rates of A. bicolor pacifica and A. marmorata leptocephali ranged from 0.33 to 0.71 mm day-1 and from 0.45 to 0.63 mm day-1, respectively. These leptocephali had estimated growth rates that were spread out throughout most of the reported range of growth rates of the leptocephali of the temperate species, the Japanese eel and the Atlantic eels. Differences in the spatial distribution in relation to current systems, and the age and size compositions of the leptocephali of A. bicolor pacifica and A. marmorata suggested different spawning locations for these two species.  相似文献   

15.
Larvae of the marine cheilostomatid bryozoan Bugula neritina (L.) were prevented from settling for 1, 4 and 8 h by mechanical agitation, following which settlement and metamorphosis success were examined. Settlement rates were significantly affected by swimming time, which decreased from 100% after 2 h to 93.7 ± 4.3% after 8 h. Similarly, metamorphosis to the feeding ancestrula was significantly impaired following a swimming time of 8 h, declining from 93.7 ± 4.3% after 1 h to 65.9 ± 7.0% after 8 h. The resultant colonies grew well for the first 3 wk, following which time, growth patterns became erratic. Growth rate was in all cases highly variable, and did not correlate with enforced swimming times. Larval protein composition was examined after 1, 4 and 8 h swimming time, and post-larval composition 1, 2, 5, 24 and 48 h after settlement using sodium-dodecyl-sulphate polyacrylamide-gel electrophoresis (SDS-PAGE). Individual protein content was measured using a densitometer. Larvae did not consume protein during swimming, however a protein measuring 170 kdaltons was consumed during metamorphosis. These results are discussed in the context of larval settlement and energetics. Received: 19 July 1998 / Accepted: 3 December 1998  相似文献   

16.
A comparative study of the otolith microstructure and microchemistry of Anguilla marmorata glass eels in the western North Pacific (Japan, Taiwan, the Philippines, Indonesia) determined the timing of metamorphosis and age at recruitment to freshwater habitats with a view to learning about the early life history and recruitment of this species of tropical anguillid eel, which has a wide range throughout much of the western Pacific and parts of the Indian Ocean. Three new samples (from Japan, Taiwan, Indonesia) were analyzed and statistically compared along with two other previously published samples that were analyzed using the same techniques. Ages at metamorphosis and recruitment, respectively, were 123ᆡ.4 days (mean-SD) and 154ᆥ.0 days in specimens from Japan, 116ᆢ.6 days and 145ᆣ.6 days in those from Taiwan, 120ᆡ.0 days and 154ᆡ.5 days in the Philippines stock and 132Nj.7 days and 159ᆟ.7 days, and 120ᆣ.6 days and 152ᆣ.2 days in the Indonesian stock. The average duration of the period of metamorphosis estimated from otolith microstructure was very similar (15-17 days) in the specimens from all locations. A close linear relationship was found between the ages at metamorphosis and recruitment at all locations, suggesting that individuals that metamorphosed earlier were recruited to freshwater habitats at a younger age. Back-calculated hatching dates ranged over about 6 months of the year, suggesting that this species may spawn throughout much of the year. It is hypothesized that specimens from all four sites are from the same spawning population originating in a spawning area in the North Equatorial Current of the western North Pacific.  相似文献   

17.
Accelerator mass-spectrometry was used to measure radiocarbon in the earliest formed portions of selected blue grenadier, Macruronus novaezelandiae, otoliths to provide a validation of fish-age estimates based on the quantification of opaque and translucent zones in otolith thin-sections. Δ14C data from blue grenadier otoliths were compared with previous estimates of Δ14C in seawater-dissolved inorganic carbon at similar latitutes, longitudes, and depths to link variation in otolith Δ14C to time. Minimum otolith Δ14C was −76.9 ± 7.7‰, indicative of pre-bomb radiocarbon levels below the surface mixed-layer at latitudes where juvenile blue grenadier are found. When plotted versus fish age estimated from otolith sections, the majority of the Δ14C data combined to define a curve reflecting the increase in bomb radiocarbon in temperate oceans of the Southern Hemisphere, indicating that age-estimation procedures based on otolith thin-sections are satisfactory for determining blue grenadier age. If otolith-section age estimates were correct, peak otolith Δ14C of 106.8 ± 7.9‰ occurred during the late 1960s, i.e. earlier than expected. This may be a manifestation of an increase in the mixed-layer depth associated with increased frequency of zonal westerly winds at this time. Received: 3 December 1996 / Accepted: 17 December 1996  相似文献   

18.
Juveniles of the planehead filefish Stephano-lepishispidus (Pisces: Monacanthidae) (Linnaeus, 1766) are a major component of the Sargassum spp. community, yet little is known of their ecology. In this study, the otolith record of age, growth, and ontogeny in S. hispidus was examined. Juveniles caught off Beaufort Inlet, North Carolina (USA) on 30 June 1996 were marked with alizarin complexone and reared in a flow-through, outdoor tank for up to 19 days. Examination of marked otoliths at several time intervals showed that increment formation was not significantly different than one increment per day, and thus, increment number was used to estimate age. Depth-distribution, morphology, and meristics of larvae and juveniles collected (1990–1992) between Cape Romain, South Carolina, and Cape Hatteras, North Carolina, were examined to identify the timing of the larval to juvenile transition. All indicators suggested the transition occurred between 17 and 20 days. Mean otolith increment widths exhibited a marked change at about 20 days, coinciding with the timing of the larval to juvenile transition and a change in the depth distribution from bottom to surface waters. Increment width of individual juveniles, however, did not exhibit the same pattern; only 40% conformed to the pattern identified for all fish. Thus, the record of the larval to juvenile transition is clear at the population level, but unresolved at the individual level. Received: 1 November 1999 / Accepted: 18 December 2000  相似文献   

19.
T. W. Lee  J. S. Byun 《Marine Biology》1996,125(2):259-268
Otolith growth during metamorphosis and some aspects of the early life history of conger eel (Conger myriaster) were determined as indicated from microstructure in otoliths of the leptocephali collected from Cheonsu Bay, Korea during May and June 1988. The leptocephali occurred from early May to late June in the study area. Larvae collected in early May were in the late leptocephalus stage, and the proportion of the metamorphosing leptocephali increased over time. Otoliths in the late leptocephalus stage showed a translucent zone only. Although the fish did not feed and the body length diminished during metamorphosis, the otolith continued to grow and, consequently, the opaque zone was formed outside the translucent zone. The inner translucent zone can be considered a leptocephalus zone, and the outer opaque zone a metamorphic zone. Assuming that the growth increments were deposited daily from hatching, the conger eel can be considered to have hatched between September and February. The number of increments in the inner hyaline zone ranged from 124 to 239, and was assumed to represent the number of days from hatching to the onset of metamorphosis. The duration of metamorphosis was estimated as 51 to 75 d based on the number of increments in the opaque zone at the end of the metamorphic stage.  相似文献   

20.
 The variability of magnesium, strontium and calcium concentrations in the two skeleton types (sclerites and axis) of the red coral (Corallium rubrum) was assessed by using X-ray fluorescence spectroscopy and microprobe analysis as a prerequisite for their use as ecological indicators. Axis cross sections showed light and dark circular growth bands corresponding to fast and slow growth, respectively. Using microprobe analyses the Mg and Sr concentrations ranged from 2.8 to 3.0% and from 0.21 to 0.29%, respectively, in the sclerites and from 2.4 to 3.0% and from 0.1 to 0.28%, respectively, in the axis. Mg/Ca and Sr/Ca ratios varied within sclerites (average, 12% for both ratios) and within the axis of single colonies (average, 20% for Mg/Ca and 48% for Sr/Ca). Sr/Ca ratios in the axis were lower in fast-growing branch tips than in older, more basal parts of the colonies, whereas the Mg/Ca ratio did not differ significantly between colony regions. Mg/Ca and Sr/Ca ratios in the axis decreased significantly with depth, and we estimated an increase of the Mg/Ca ratio of 0.004–0.006 per degree Celsius. In all depth layers, Sr/Ca ratios showed a significant direct relationship with skeleton density in axis cross sections, whereas there was no significant relationship for Mg/Ca. Overall, our data indicate that temperature promotes the incorporation of Mg in C. rubrum as in other calcite skeletons, whereas Sr concentrations are inversely related to growth rate. This preliminary study suggests that Mg and Sr concentrations in the axis of the red coral have a strong potential as ecological indicator for temperature and growth rate. Received: 3 March 2000 / Accepted: 30 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号