首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
改性污泥基生物炭的性质与重金属吸附效果   总被引:8,自引:4,他引:4  
为提高污泥基生物炭在高钙溶液体系中对重金属阳离子的吸附能力,将Fe2O3、MnO2、ZnO与市政污泥以质量比1 ∶10(以过渡金属元素质量计)混合共热解,制备改性生物炭;表征改性生物炭的组成、官能团分布和表面性质,考察其对典型重金属阳离子Cd2+的吸附效果.过渡金属氧化物可促进污泥的热解,改性生物炭的H/C原子比均低于0.31,碳链裂解脱氢更彻底.改性生物炭中Fe、Mn保留较好,分别主要以单质和氧化物形态存在;而Zn流失较多.改性生物炭中的孔隙以介孔为主,平均孔径约3.8 nm,比表面积在50 m2·g-1以上.初始浓度约200 mg·L-1的Cd2+溶液中,Ca2+初始浓度从0 mg·L-1升高到约200 mg·L-1,Fe改性生物炭对Cd2+的吸附容量从43.17 mg·g-1降至27.88 mg·g-1,但仍较未改性生物炭高10 mg·g-1以上,在含钙溶液体系中表现出了对Cd2+更强的吸附性能.Fe2O3较MnO2和ZnO对市政污泥基生物炭吸附重金属的强化效果更好.  相似文献   

2.
采用响应曲面法优化了KOH改性污泥生物炭(SB-KOH)的制备条件,研究了各因素之间对生物炭吸附性能的交互影响,并且探讨了KOH强化生物炭吸附能力的机制.同时,研究了吸附时间、吸附温度及pH对SB-KOH吸附Pb(Ⅱ)的影响,探讨其吸附机理.结果表明:KOH浸渍浓度是最显著因素,较高浸渍浓度有利于提高SB-KOH的吸附性能;增加KOH浸渍浓度和升高热解温度可以协同提高SB-KOH的吸附性能;最佳制备条件为2.5 mol·L-1的KOH浸渍浓度、7 h的浸渍时间、631 ℃的热解温度和44 min的热解时间.KOH改性后的污泥生物炭表面粗糙, 比表面积增大,微孔数量增加,SB-KOH的比表面积为141.22 m2·g-1,是原污泥生物炭(SB,5.93 m2·g-1)的24倍,改性后的生物炭碱性提高、K元素含量增加.SB-KOH吸附Pb(Ⅱ)是以化学吸附为主的多分子层混合吸附,膜扩散是主要的速率控制步骤,增加溶液pH、提高温度可促进吸附.吸附机制涉及矿物沉淀(Qmp)、离子交换(Qie)、含氧官能团的络合(Qoc)和金属π键结合(Q),不同吸附机理的贡献顺序为:Qmp(143.5 mg·g-1)>Qie(39.67 mg·g-1)>Qoc(8.56 mg·g-1)>Q(1.65 mg·g-1),KOH改性强化了生物炭对Pb(Ⅱ)的矿物沉淀和离子交换吸附量.本研究丰富了KOH改性污泥生物炭的制备理论,阐明了SB-KOH吸附Pb(Ⅱ)吸附机理及其影响的主要机制.  相似文献   

3.
高锰酸钾改性桉木生物炭对Pb(Ⅱ)的吸附特性   总被引:1,自引:0,他引:1  
以桉木为原料,使用高锰酸钾对桉木生物炭(BC)进行改性,制备改性生物炭(KBC).对其进行表征,并进行了水溶液中Pb (Ⅱ)的静态吸附实验,探究了溶液pH、吸附剂投加量、吸附时间、温度和初始浓度对Pb (Ⅱ)的吸附效果影响.结果表明,最佳吸附反应pH为5,吸附在6 h达到饱和,当温度为25℃,Pb (Ⅱ)的初始浓度为100mg ·L-1,吸附剂投加量为0.06 g时,KBC对Pb (Ⅱ)的最大吸附量为83.059mg ·g-1,去除率为99.67%.KBC对Pb (Ⅱ)的吸附遵循二级动力学模型和Langmuir等温吸附模型,其是发生在均匀表面的单层吸附.采用BET、SEM-EDS、XRD、FT-IR和XPS对吸附剂进行表征分析,发现吸附机制主要是KBC含氧和KBC含锰基团通过络合作用和沉淀作用来吸附Pb (Ⅱ),以及在吸附过程中生物炭表面会形成—O—Pb—O—双齿配合物.因此,高锰酸钾改性BC可以作为一种很好的Pb (Ⅱ)吸附剂.  相似文献   

4.
有机氮(ON)在雨水径流氮素污染中起关键作用,但多数研究只关注可生物降解有机氮的生物转化去除,忽略了占比较高的难生物降解有机氮.以生物炭作为吸附剂,探究其对雨水径流典型难生物降解有机氮(吲哚)的吸附效能及机制.结果表明,原始生物炭对吲哚有较高的单位吸附量(45 mg·g-1),生物炭投加浓度为0.4 g·L-1时其表面平均吸附位点利用度最高.H2O2和NaOH改性生物炭对吲哚的吸附量是原始生物炭的1.3倍和1.6倍,吸附机制包括疏水相互作用、氢键和π-π电子供体-受体(π-π EDA)作用,以疏水相互作用为主,其中H2O2改性通过增加生物炭表面含氧官能团来加强氢键和π-π EDA作用,而NaOH改性生物炭通过大幅提高生物炭比表面积来加强疏水相互作用,故NaOH改性吸附效果更优.综上,生物炭对难生物降解有机氮具有较强去除作用,通过NaOH改性还能大幅提高效率,故在雨水径流氮素污染较高的地区把NaOH改性生物炭作为生物滞留池中的填料有着极大的应用潜力.  相似文献   

5.
浒苔生物炭对雨水径流中氨氮的吸附特性及吸附机制   总被引:1,自引:0,他引:1  
为探究生物滞留池填料(浒苔生物炭)处理雨水径流氨氮(NH4+-N)的去除效果及机制,进行室内批量吸附实验,在对浒苔生物炭进行碱改性(1、2和3 mol·L-1 NaOH改性,分别标记为BC1、BC2和BC3)基础上,开展改性前后浒苔生物炭对NH4+-N吸附性能研究.结果表明:①适宜浓度的碱改性提高了浒苔生物炭的比表面积和表面微观结构,增加了O元素含量,丰富了表面官能团,其中BC2改性效果最好.②浒苔生物炭对NH4+-N的吸附在pH值9.0和生物炭投加量0.5 g·L-1时,吸附量最大,BC1和BC2的吸附量比BC分别提高6.4%和10.8%,BC3则降低13.7%,BC2吸附效果最好,饱和吸附量达16.76mg·g-1.③浒苔生物炭对NH4+-N的吸附机制为单分子层的化学吸附,吸附过程受到生物炭的高pH值、孔隙的静电吸引以及表面羟基(-OH)、羧基(-COOH)和碳氧单键(C-O)等官能团的络合氧化等的促进作用.综上所述,适量的NaOH来改性浒苔生物炭能够提高对NH4+-N的吸附效果,可作生物滞留池的填料来去除NH4+-N污染.  相似文献   

6.
魏红  赵江娟  景立明  钮金芬  付冉  董雯 《环境科学》2023,44(12):6811-6822
采用NaHCO3活化荞麦皮生物炭,优化得到生物炭0.25N-BC[m(NaHCO3):m(荞麦皮)=0.25:1],通过SEM、BET、XRD、Raman、FTIR和XPS等方法进行表征,分析NaHCO3对生物炭理化性质的影响,探究其对非离子型碘代X射线造影剂碘帕醇(IPM)的吸附性能和机制.结果表明,与荞麦皮生物炭相比(BC),NaHCO3活化生物炭的结构缺陷程度更高(比表面积和孔体积分别由480.40 m2·g-1和0.29 cm3·g-1增至572.83 m2·g-1和0.40 cm3·g-1,ID/IG是BC的1.22倍),表面含碳和含氧官能团数量发生显著变化,极性增强[(N+O)/C由0.15增至0.24],能够有效吸附IPM,0.25N-BC对IPM最大吸附量达到74.94 mg·g-1,是BC (7.88 mg·g-1)的9.51倍.拟二级吸附动力学和Langmuir、Freundlich等温线模型可很好地拟合0.25N-BC对IPM的吸附,吸附过程主要以化学吸附和单层、非均质多层吸附为主;孔隙填充、氢键、π—π和n—π相互作用是0.25N-BC吸附IPM的主要机制.对比不同碱[KOH、Na2CO3、NaHCO3、KHCO3和Ca (HCO32]活化荞麦皮生物炭对IPM的吸附,0.25N-BC吸附效率高,达到吸附平衡时间短,能有效去除实际水体(二沉池出水和湖水)中IPM的残留,并具有良好的循环使用性能,吸附-解吸3次后对IPM的去除率仍保持在74.91%.研究表明NaHCO3活化荞麦皮生物炭是一种绿色有效,可持续去除含碘有机物的优良吸附剂.  相似文献   

7.
FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究   总被引:1,自引:0,他引:1  
邹意义  袁怡  沈涛  周扬 《环境科学学报》2021,41(9):3478-3486
以脱水污泥为原料,制备污泥生物炭(SBC)和FeCl3改性污泥生物炭(Fe-SBC)处理低浓度吡虫啉(IMI)废水(浓度为10 mg·L-1),考察SBC和Fe-SBC对IMI的吸附性能及影响因素,并探究其吸附机理.采用SEM、XRD、FTIR、BET及元素分析等探得污泥生物炭FeCl3改性成功.Fe-SBC对IMI的最大吸附量为4.915 mg·g-1,是SBC的1.97倍,表现出更好的IMI吸附性能.pH和离子强度的变化对Fe-SBC的吸附性能影响较小,最大波动幅度分别为4.4%和7.8%.两种生物炭对IMI的吸附均符合准二级动力学模型,Freundlich模型可以更好地描述其等温吸附曲线.热力学研究表明,SBC吸附IMI是非自发吸附,而Fe-SBC是自发吸附.Fe-SBC对IMI的吸附机理包括静电作用力、氢键作用力及π-π键相互作用力.多次热解再生后的Fe-SBC对IMI的去除率仍可达93.088%.  相似文献   

8.
以酸性矿山废水生成的铁絮体和秸秆生物炭为原料,采用化学改性和紫外辐射联用技术制备改性生物炭,并通过正交试验确定最佳改性条件,同时利用FTIR、SEM和BET等方法对吸附材料的形貌特征、孔隙结构及其表面化学性质进行表征.结果表明,通过改性使吸附材料比表面积增大,吸附位点增多,在25℃、pH为7时,吸附材料改性后比表面积为295.71 m2·g-1,对Pb(II)的拟合吸附量可达278 mg·g-1.改性材料对Pb(II)的吸附过程符合Langmuir吸附等温线模型和准二级动力学模型,主要为单分子层吸附,受化学吸附控制.  相似文献   

9.
李冬  刘孟浩  张瑞苗  曾辉平  张杰 《环境科学》2021,42(10):4826-4833
在东北某自来水厂,以中试滤柱开展了低温(5~6℃)高铁锰氨[Fe(Ⅱ)11.9~14.8 mg·L-1、Mn(Ⅱ)1.1~1.5 mg·L-1和NH4+-N 1.1~3.2 mg·L-1]净化工艺实验,以探究氨氮去除途径与生物滤柱的除氨性能.结果表明,滤柱在启动初期就对氨氮具有良好的去除效果,通过理论分析与实验验证可知,TNloss是由铁氧化物对氨氮吸附造成,氨氮转化为硝氮的过程是生物硝化作用.氨氮质量浓度提高过程中,由于吸附位点有限,铁氧化物对氨氮的吸附量稳定在1 mg·L-1左右,氨氮氧化去除量不断增加,其中在滤柱上部滤层的去除量远大于下部滤层,DO是限制氨氮氧化去除量进一步增加的限制因素.滤速提升过程中,铁氧化物对氨氮吸附时间缩短,吸附量有所减少,空床接触时间(empty bed contact time,EBCT)缩短,使得单位体积滤料中硝化菌硝化去除的氨氮减少,需要增加滤层厚度以提升氨氮去除效果.  相似文献   

10.
采用液相还原法将纳米零价铁(nZVI)均匀负载在纳米活性氧化铝(γ-Al2O3)表面和孔道内壁上,制备出磁性纳米零价铁/活性氧化铝复合材料(nZVI/γ-Al2O3)并对其进行了表征,模拟了5种典型重金属离子Zn(Ⅱ)、Cu(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)、Mn(Ⅱ)在nZVI/γ-Al2O3上的吸附等温线和动力学,并研究了多元重金属离子体系中竞争吸附和协同吸附行为.结果表明,磁性纳米零价铁负载在纳米活性氧化铝上,不仅克服了因体积效应和表面界面效应所导致的nZVI颗粒团聚,而且使nZVI仍处于稳定的高表面能状态.nZVI/γ-Al2O3复合材料兼具高表面积、高还原性和高表面活性,其对Zn(Ⅱ)、Cu(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)、Mn(Ⅱ)离子表现出了良好的吸附性能,单一重金属离子的饱和吸附容量分别为53.0、74.9、114.7、99.1、42.9 mg·g-1.在多元重金属离子体系中5种重金属离子存在竞争吸附和协同吸附作用.当pH为6.67,吸附剂投加量为0.5 g·L-1,各重金属离子初始浓度为10 mg·L-1时,300 min内Cr(Ⅲ)、Cu(Ⅱ)、Zn(Ⅱ)、Mn(Ⅱ)的去除率分别高达99.9%、99.9%、99.9%、81.7%,处理后Cr(Ⅲ)、Cu(Ⅱ)、Zn(Ⅱ)平衡浓度均低于检出限,Mn(Ⅱ)和Cd(Ⅱ)平衡浓度分别为1.9 mg·L-1和6.4 mg·L-1;在多元体系下Zn(Ⅱ)与其他金属离子存在协同吸附,但Cd(Ⅱ)与其他重金属离子存在竞争吸附,其去除率仅为37.7%.因此,nZVI/γ-Al2O3复合吸附材料用于去除废水中典型重金属具有良好的应用前景.  相似文献   

11.
木屑生物炭在雨水径流中的氮磷淋出和吸附特性   总被引:2,自引:1,他引:1  
孟依柯  王媛  汪传跃 《环境科学》2021,42(9):4332-4340
现阶段生物滞留系统的填料存在氮磷营养素淋出及吸附净化效果不稳定的问题.为评估木屑生物炭作为生物滞留系统过滤层填料的可行性,选用传统填料(椰糠、堆肥、陶粒和火山石)作为对比材料,通过理化性质测试、批量淋洗实验、等温吸附和解吸实验,研究木屑生物炭的基本性质、淋出特性和吸附特性,探究木屑生物炭对生物滞留系统的优化效果与改良机制.结果表明,经高温热解生成的木屑生物炭具有疏松和多孔的特性,饱和含水率为195.65%,持水效果好;热解后木屑生物炭表面的氮磷元素转换为稳定的化合物,在批量淋洗实验中其氮素淋出量低、淋出速度快,磷素淋出滞缓但在人造雨水径流的淋洗中保持线型负值增长,吸附效果稳定;在典型雨水径流浓度(2mg·L-1的NH4+及2mg·L-1的PO43-)下,木屑生物炭可吸附34.6mg·kg-1的NH4+和59.5mg·kg-1的PO43-,具有突出的综合吸附能力;NH4+及PO43-吸附平衡后的木屑生物炭在去离子水中的平均解吸率为21.23%和17.43%,吸附效果稳定.综上所述,木屑生物炭的施用可解决填料营养盐过剩淋出的问题,且具有较好的氮磷吸附效果,可用作生物滞留系统的填料解决雨水径流污染问题.  相似文献   

12.
KOH活化小麦秸秆生物炭对废水中四环素的高效去除   总被引:1,自引:0,他引:1  
活化是提高生物炭吸附性能的重要手段.以小麦秸秆为研究对象,KOH为活化剂,制备KOH活化生物炭(K-BC),同时制备原状生物炭(BC)作为对照.对生物炭进行比表面积和孔径、元素分析、XPS、FTIR、Raman、XRD和pHpzc等表征,考察KOH活化对生物炭理化性质的影响,并探究生物炭对水体中四环素的吸附性能和机制.结果表明,KOH活化之后生物炭的比表面积和孔体积可达996.4 m2·g-1和0.45 cm3·g-1.KOH活化会制造更多的碳结构缺陷,影响生物炭的官能团和表面电性.拟二级动力学和Langmuir模型可以较好地拟合生物炭吸附四环素的过程.环境温度升高能提高生物炭对四环素的吸附量.K-BC吸附四环素是自发、吸热和无序度增加的过程.K-BC对四环素的最大吸附量理论可达到491.19 mg·g-1(实验温度为45℃).结合吸附后生物炭的Raman、FTIR和XPS表征,发现孔隙填充和π-π作用是K-BC吸附四环素的主要机制,氢键和络合作用也发挥重要作用.此外,K-BC还具有良好的循环使用性能.综上所述,KOH活化小麦秸秆生物炭是有效和可行的,可用于废水中四环素的去除.  相似文献   

13.
采用超声辅助-水热法将聚乙烯亚胺(PEI)成功接枝到玉米芯生物炭表面,制备了PEI改性生物炭材料(PBC),并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积分析仪和傅里叶红外光谱仪(FTIR)等方法对其表征.结果表明,虽然PEI通过CN、C-N和离子键与生物炭表面的活性基团链接,但制备的PBC材料仍保持原生炭的无定型结构和形貌,且比表面积高达928.1 m2·g-1.同时,还研究了PBC的吸附性能和热力学行为,结果表明,吸附过程符合Langmuir等温吸附机制,属于微孔单层吸附过程,而且随温度的降低,吸附量增大,在10、20和30℃时,饱和吸附量(Qm)分别为6.47、4.75和2.64 mmol·g-1.此外,PBC重复利用性能良好,容易实现热再生,即使循环利用10次,吸附性能也无显著变化(p>0.05),且穿透吸附量(QB)保持在2.6~2.7 mmol·g-1.  相似文献   

14.
李玥  胡奇  高大文 《环境科学》2018,39(4):1731-1738
本研究采用一体式厌氧流化床膜生物反应器(integrated anaerobic fluidized-bed membrane bioreactor,IAFMBR)处理含苯并噻唑的高浓度合成废水,考察了温度变化(35、25和15℃)对反应器运行效能,膜污染情况和微生物群落结构的影响.结果表明,温度下降对反应器运行效能和膜污染情况产生不利影响.当温度从35℃下降到15℃时,COD去除率下降7.4%,苯并噻唑去除率下降49.2%,挥发酸总量上升225.66 mg·L-1,甲烷产率(以CH4/CODremoved计)下降0.118m3·kg-1.膜污染周期从5.2 d下降到2.5 d.对于滤饼层而言,达到膜污染时,SMP(soluble microbial product)的质量浓度从42.47 mg·L-1上升到70.62 mg·L-1,EPS(extracellular polymeric substance)的含量(以VSS计)从46.30 mg·g-1上升到82.22 mg·g-1;对于混合液而言,SMP的质量浓度从36.46 mg·L-1上升到69.35 mg·L-1,EPS的含量从47.47 mg·g-1上升到81.63 mg·g-1.蛋白质是EPS和SMP的主要成分,约占总成分的80%.微生物群落结构表明,Firmicutes(厚壁菌门)和Chloroflexi(绿弯菌门)始终是最优势的菌门,占全部菌门相对丰度的42.6%~61.0%.随着温度的下降,优势菌属分别是Clostridium(13.7%),Levilinea(15.2%)和Lactococus(17.9%).产甲烷古菌的优势菌属始终是Methanosaeta.  相似文献   

15.
吴盈秋  夏鹏  李远  王学江 《环境科学》2022,43(12):5667-5675
通过使用镁改性硅藻土回收废水中的氮磷营养素,优化制备了一种复合材料(D-MAP),并将其用于废水中重金属Pb2+和Zn2+的去除.研究探讨了材料投加量、反应时间、反应温度和溶液初始pH等因素对Pb2+和Zn2+在D-MAP上吸附的影响.D-MAP吸附去除Pb2+和Zn2+的最优条件为:D-MAP投加量分别为0.25 g·L-1和0.30 g·L-1,Pb2+和Zn2+初始浓度分别为300 mg·L-1和60 mg·L-1,溶液初始pH为5.0.在此条件下,其对Pb2+和Zn2+去除率分别可达78.67%和89.66%.动力学和热力学的结果表明,D-MAP对Pb2+和Zn2+的吸附更符合准二级动力学模型;其吸附等温线可用Langmuir模型描述,吸附是自发吸热的过程.Langmuir等温拟合结果指出,D-MAP对Pb2+和Zn2+的最大吸附容量分别为901.0 mg·g-1和206.2 mg·g-1.使用SEM/EDS、XRD和FT-IR等手段对吸附Pb2+和Zn2+前后的吸附剂进行表征,结果表明,D-MAP是一种鸟粪石-硅藻土复合材料,可通过与Pb2+和Zn2+生成Pb10(PO46(OH)2和Zn3(PO42·2H2 O去除废水中Pb2+和Zn2+.D-MAP对Pb2+和Zn2+的去除效果随着pH的增加而增加,且最终产物形态随pH不同产生变化.  相似文献   

16.
生物炭及其改性材料由于具有较发达的比表面积和孔隙结构、丰富的表面官能团及较强的吸附能力等特性,被作为良好的环境修复材料而成为农田土壤重金属污染修复领域的研究热点.选取稻壳生物炭,采用K3PO4、KMnO4和NaOH进行改性处理,利用扫描电镜(SEM)和红外光谱(FT-IR)等对生物炭表面微观形态与结构进行表征分析,并开展了90 d土壤培养试验,比较分析3种改性生物炭对冶炼厂周边农田复合重金属污染土壤中Cd和Cu的有效性和形态的影响.结果表明,改性后生物炭表面粗糙,比表面积和孔容均有不同程度的增大,其中,NaOH改性生物炭变化最为明显,分别由改性前的4.96 m2·g-1和0.02 cm3·g-1增至60.79 m2·g-1和0.12 cm3·g-1,孔径变化则与之相反;改性生物炭的官能团吸收特征峰值均发生改变,其中K3PO4改性生物炭的变化最为明显.添加不同改性生物炭均能显著提高土壤pH值(P<0.05),K3PO4改性生物炭对土壤pH的增幅最大,为20.5%;K3PO4改性生物炭对土壤中Cu和Cd的有效态含量的影响也最为明显,分别降低了75.44%和67.70%;土壤中Cu和Cd的水溶态、可交换态和碳酸盐结合态比例均降低,其中K3PO4改性生物炭对Cu和Cd的钝化效果最好,添加量为2%时,钝化效率分别为61.06%和4.12%,Cu的钝化效率远高于Cd.综上所述,K3PO4改性生物炭对复合污染土壤中Cu和Cd具有较强的钝化效果.  相似文献   

17.
通过悬浮粒子浸涂法将合成的γ-Al2O3纳米粒子固载于316L多孔不锈钢表面以吸附水溶液中的Cr(VI)和Cd(Ⅱ).扫描电镜(SEM)和X射线衍射(XRD)测试结果表明,γ相的Al2O3纳米粒子均匀地涂在了316L多孔不锈钢基体上,膜体表面沉积厚度约为20 μm.该膜对单一Cr(VI)和Cd(Ⅱ)吸附的最佳pH分别为3.0~4.0和8.0~9.0,吸附均符合动力学准二级模型和Langmuir吸附等温模型,最大吸附量分别为0.603 mg·g-1和0.399 mg·g-1.本研究可为水体中的高毒性重金属Cr(VI)和Cd(Ⅱ)去除提供一定的理论和技术参考.  相似文献   

18.
利用共沉淀和水热法于生物炭(BC250、BC350、BC450、BC550和BC650)负载CuFeO2,得到的复合材料对水中四环素(TC)具有较好的去除效果.CuFeO2与BC450质量比为2 :1的CuFeO2改性生物炭(CuFeO2/BC450=2 :1)对TC的吸附性能最强.TC于CuFeO2/BC450=2 :1的吸附符合颗粒内扩散模型,表明吸附是界面和孔隙扩散控制的过程.在中性pH、298 K下,CuFeO2/BC450=2 :1对TC的Langmuir最大吸附量为82.8 mg ·g-1,远大于BC450的13.7 mg ·g-1和CuFeO2的14.8 mg ·g-1.热力学结果表明,CuFeO2/BC450=2 :1对TC的吸附是自发和吸热过程.随pH增加,CuFeO2/BC450=2 :1对TC的吸附去除呈先增加后降低的趋势,中性条件时效果最佳.CuFeO2/BC450=2 :1对TC的强吸附得益于CuFeO2负载对材料孔隙结构的改善、比表面积的增大和表面官能团、电荷属性的改变.研究结果为净化抗生素污染提供了一种高效的磁性吸附剂.  相似文献   

19.
采用热活化法辅以加压超声浸渍技术将硅酸盐水泥颗粒(PC)和Fe2O3负载于稻壳生物炭(RHC)的表面,得到了具有优异除磷效能和高选择性吸附性能的Fe2O3/PC功能化复合多孔炭材料(Fe-PC/RHC).基于磷吸附容量和磷去除率,对PC和Fe3+负载进行量的优化;选取优化炭进行比表面积、孔径分布、物相结构、表面结构、微观形貌和零电位点表征测定.结果表明:复合炭材料表面均匀分散着硅酸钙盐、硅酸铁盐和Fe2O3等矿物活性颗粒,对其比表面积、孔结构和吸附性能具有增强作用;当RHC:PC=0.8:1(质量比),Fe3+:RHC=2:1(2 mmol·g-1)时制备的炭材料Fe2-PC/RHC,投加0.2 g,处理100 mg·L-1的磷酸盐溶液,在pH=6~8的条件下表现出了优异的吸附性能;铁盐的掺杂能有效调控介质pH值从11.09降低至7.71,zeta电位从2.82提高到7.57;准二级动力学模型和Langmiur模型更适用于描述Fe2-PC/RHC吸附磷酸盐的过程,吸附4 h后逐渐趋于平衡,饱和吸附量为69.92 mg·g-1;在几种常见阴离子和阳离子共存的情况下,Fe2-PC/RHC对磷酸盐仍然表现出了优异的选择性吸附;结合吸附前后材料的表征结果,化学吸附是主要的除磷机理,此外还可能存在配体交换和静电吸引.  相似文献   

20.
为了制备价廉高效的吸附材料,采用污水厂污泥为原料,以水热碳化法(hydrothermal carbonization,HTC)在不同温度(160、190、220和250℃)和不同反应时间(1、4、8和16 h)的条件下,制备出污泥水热炭(hydrochar)并应用于水中亚甲基蓝(methylene blue,MB)的吸附.通过BET、FT-IR和零电荷点等表征手段分析了水热炭的结构和理化性质,并结合批次实验、等温吸附和吸附动力学研究了水热炭对MB的吸附特性.结果表明,在190℃和4 h条件下制备的污泥吸附剂(SS190-4),其比表面积最大(11.916 m2·g-1),对亚甲基蓝(MB)的去除率高达96.44%.当溶液pH趋于碱性时更有利于污泥水热炭对MB的吸附,水热炭投加浓度为0.5 g·L-1时较为经济合理,当溶液中有共存离子时会抑制水热炭对MB的吸附能力.水热炭对MB的吸附更符合Langmuir等温方程,R2在0.966~0.988之间,在50℃下,水热炭对MB的最大模型吸附量为400 mg·g-1.其吸附过程符合准二级动力学模型,是自发的放热反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号