首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李北罡  马钦  刘培怡 《生态环境》2010,19(8):1901-1905
研究了黄河中下游10个不同表层沉积物在黄河水体中对磷酸盐(P)的吸附动力学及其影响因素和吸附机理。结果表明:(1)不同黄河沉积物对P的吸附能力各不相同,但吸附量随时间的变化具有相同的变化趋势,吸附速率均在前8h内较快,以后逐渐趋缓,在48h时基本达到吸附平衡。不同黄河沉积物对P的吸附量均随P初始质量浓度的增加而增大,随沉积物含量增大而减小;(2)不同沉积物在不同P初始质量浓度下对P的吸附动力学均符合Lagergren二级吸附动力学模型及Weber-Morris扩散方程,求得二级吸附速率常数和扩散速率常数分别在11.9866~157.55g·mg^-1·h^-1和0.0005~0.0119mg·g^-1·h^-1/2之间,吸附过程由P在沉积物内扩散控制。  相似文献   

2.
黄河上游沉积物对磷酸盐的吸附动力学研究   总被引:1,自引:0,他引:1  
李北罡  刘培怡  马钦 《生态环境》2010,19(11):2693-2697
研究了黄河上游10个不同表层沉积物在黄河水体中对磷酸盐(P)的吸附动力学及其影响因素和吸附机理。结果表明:不同黄河沉积物对P的吸附能力各不相同,但吸附量随时间的变化具有相同的趋势,吸附速率均在前8 h内较快,以后逐渐趋缓,在48 h时基本达到吸附平衡。不同黄河沉积物对P的吸附量均随P初始质量浓度的增加而增大,随沉积物质量浓度增大而减小,且也受水体pH值的影响,在pH为6.0~9.0范围内吸附量比较大。不同沉积物在不同P起始质量浓度下对P的吸附动力学均符合Lagergren二级吸附动力学模型及Weber–Morris扩散方程,求得二级吸附速率常数和扩散速率常数分别在10.85~229.29 g.mg-1.h-1和0.7×10-3~5.2×10-3 mg.g-1?h-1/2)之间,吸附过程由P在沉积物内的扩散控制。  相似文献   

3.
沉积物对菲和五氯酚的吸附性能   总被引:4,自引:0,他引:4  
陈华林  陈英旭 《环境化学》2003,22(2):159-165
研究了菲和五氯酚(PCP)在五种沉积物的吸附解吸行为,菲和PCP在各沉积物上的吸附和解吸都是较快的过程。均能在8h内达到平衡,吸附和解吸结果表明,高有机质含量的沉积物对菲和PCP的吸附和持留能力都较强,菲和PCP在各沉积物中的吸附系数跟沉积物的有机质含量呈线性正相关。等温吸附结果表明,低有机质含量的三种沉积物比有机质含量较高的两种沉积物呈更好的线性关系。不同沉积物对菲和PCP的吸附性能差异跟沉积物的有机质含量密切相关。  相似文献   

4.
The adsorption of copper, zinc, cobalt, lead and cadmium ions onto Colpomenia sinuosa was studied as a function of contact time, initial metal ion concentration and initial pH. In addition, desorption studies were performed. Characterisation of this adsorbent was also confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis. Batch adsorption experimental data were analysed using Langmuir, Freundlich and Dubinin–Raduschkevich (D–R) adsorption isotherms. The results indicated that the biosorption equilibrium was well described by both the Freudlich and D–R isotherms. Moreover, sorption kinetics was performed and it was observed that equilibrium was reached in<60 min, which could be described by the pseudo-second-order kinetic model for all heavy metals. The sorption of heavy metals onto the biomass was largely dependent on the initial solution pH. The elution efficiency for heavy metal ions desorption from C. sinuosa was determined for 0.1 M HCl, 1.0 M HCl and 1.0 M HNO3. Desorption efficiency and also adsorption capacity were highest for Pb(II). The results indicate that C. sinuosa has great potential for the removal of heavy metals in an ecofriendly process.  相似文献   

5.
Adsorption of hydrophobic contaminants at the particle/water interface is one of the key processes controlling their fate in the aquatic environment. The sorption of the natural female hormones oestrone and 17-oestradiol has been studied under simulated riverine conditions. Both the kinetics and the effects of varying fundamental environmental parameters (e.g. sediment properties) on the thermodynamic equilibrium partition coefficient (K p) have been studied in continuous and batch sorption experiments, respectively. Results showed that the sorption of oestrone and 17-oestradiol by sediment was relatively slow, reaching equilibrium in 50 days. In addition, relatively small adsorption of both oestrone and 17-oestradiol onto the sediment was observed, with K p values between 200 and 250 mL g–1. The comparable K p values of the two compounds reflect their structural similarity. It can be concluded that the two endocrine disruptors, oestrone and 17-oestradiol remain primarily in association with the aqueous phase.  相似文献   

6.
U.S. laws require that contaminant bioaccumulation potential be evaluated before dredged material can be recycled. Simple fugacity models, e.g. organic contaminant aqueous partition coefficient (K oc)-derived theoretical bioaccumulation potential, are commonly used to estimate the partitioning of hydrophobic organic contaminants between sediment organic matter and organism lipid. K oc-derived models, with or without the addition of a soot carbon term, did not accurately or consistently predict total polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls partitioning of eight sediments from ongoing dredging operations onto C18-coated filter paper. These models also failed to predict the partitioning of individual PAHs from these eight sediments. These data underscore the trade-offs between the ease of using simple models and the uncertainty of predicted partitioning values.  相似文献   

7.
Toxiwasp∗     
TOXIWASP combines most of the kinetic structure of EXAMS 2 with the transport capabilities of WASP (Water Analysis Simulation Program). TOXIWASP uses variable chemical degradation rates from chemical properties and the environmental conditions of the aquatic ecosystem. These rates are reduced from pseudo first‐order rates to first‐order rates including the processes hydrolysis, biotransfor‐mation, phototransformation, oxidation, and volatilisation. Assuming ultimate local equilibrium, and using a chemical dependent partition coefficient as well as spatially varying environmental carbon fractions, sorption onto sediments and biomass is calculated. Environmental alternations could be specified in any time scale by providing monitoring data.

TOXIWASP generates total sediment and chemical concentrations every time step in every segment, including surface water, subsurface water, surface bed and subsurface bed. Advection, dispersion, mass loading, sedimentation, and scour affect sediment concentration in the water column and in the bed sediment concentrations depend on burial and erosion. In addition chemical concentrations are influenced by degradation, sediment‐water dispersion, and percolation. Lateral transport of chemical within the bed is neglected and transport data are not calculated in the program. TOXIWASP is developed to model stratified lakes, reservoirs, large rivers, estuaries, and coastal waters. As for EXAMS 2 (Burns et al.2) the TOXIWASP user has to accept the model's inability to connect the water body to a chemically contaminated atmosphere.  相似文献   

8.
Selenium (Se) is an essential trace nutrient for mammals; however, the range between deficit and toxic levels is narrow. In this study, the potential sorption of selenite onto pyrite particles from an aqueous solution was investigated. An intraparticle diffusion model was used to describe kinetic data of sorption, yielding diffusivity values of 5 × 10?7 cm2/s. The Langmuir isotherm equation could be used to describe the experimental data. The fitting results indicated that b and {Se(IV)}max have values of 0.37 L/mg and 3.49 mg/g, respectively. The sorption of selenite onto the surface of pyrite particles was dependent on a pH range of 2–12, and the quantity of sorption onto pyrite was negatively correlated with pH; that is, the amount of sorption onto pyrite increased with a decrease in pH. In addition, organic matter did not exert a significant effect on removal of selenite. With a reaction time greater than 1 week, sorption of selenite onto pyrite particles was found to partially reduce the amount of elemental Se.  相似文献   

9.
The linear alkylbenzenesulfonate (LAS) sorption on environmental sediments has been known long ago. Their high concentrations reflect the massive input of these chemicals from household and industrial uses. However few attempts were made to identify biodegradation metabolites of LAS in sediment. In this report, a method for the determination of these compounds in sediment samples by high‐performance liquid chromatography (HPLC) is described. The first step of our work was performed by solid‐phase extraction with octadecyl‐bonded silica (C18) mini‐columns and provided a suitable recovery of LAS (90 ± 5%) and most metabolites. Furthermore, laboratory investigations led to study the behaviour of LAS in sediment. The environmental samples used for this purpose were collected from a pond (named étang de Bolmon) located in the French Mediterranean coast. Our results were in agreement with an aerobic biodegradation process of LAS that occurred only with high values of sediment redox potential and needed the samples to be vigorously shaken to ensure adequate mixing and suspension of particulate material. In a stagnant sediment or under anaerobic conditions, LAS is not degraded. p‐Sulfophenylacetic acid and p‐sulfocinnamic acid were evidenced as predominant metabolites and were found not to be persistent.  相似文献   

10.
Sorption by humic acids is known to modify the bioavailability and toxicity of metals in soils and aquatic systems. The sorption of cadmium(II) and copper(II) to two soil humic acids was measured at pH 6.0 using ion-selective electrode potentiometric titration at different temperatures. Sorption reactions were studied with all components in aqueous solution, or with the humates in suspension. Adsorption reactions were described using a multiple site-binding model, and a model assuming a continuous log-normal distribution of adsorption constants. Adsorption of Cu2+ was more favourable than adsorption of Cd2+. The log-normal distribution model provided the closest fit to observations and allowed parameterisation of adsorption data using a mean adsorption constant (log K μ). Sorption of Cd2+ to dissolved humic acids increased slightly in extent and sorption affinity with increasing temperature, but the effect was small (log K μ 2.96–3.15). A slightly greater temperature effect occurred for sorption of Cd2+ to solid-phase humic acids (log K μ 1.30–2.08). Sorption of copper(II) to both aqueous- and colloidal-phase humates showed more pronounced temperature dependence, with extent of sorption, and sorption affinity, increasing with increasing temperature (log K μ 3.4–4.9 in solution and 1.4–4.5 in suspension). The weaker adsorption of Cd2+ than Cu2+, and smaller temperature effects for dissolved humates than suspended humates, suggested that the observed temperature effects had a kinetic, rather than thermodynamic, origin. For any metal-to-ligand ratio, free metal ion concentration, and by inference metal bioavailability, decreased with increasing temperature. The consistency of the data with kinetic rather than thermodynamic control of metal bioavailability suggests that equilibrium modelling approaches to estimating bioavailability may be insufficient.  相似文献   

11.
Large amounts of phosphate ores with high concentrations of uranium were dumped by a phosphate plant into the Flix water reservoir in the Ebre River, Catalonia, NE Spain. These phosphate wastes have been mixed over the years with effluents from other industries as well as with the sediments of the river, resulting in a complex mixture of solid wastes and sediments. No investigations on uranium speciation in such sediments were made because of the complexity of the sediments composition as well as the relatively low uranium content. However, these studies are necessary in order to predict the release of the uranium to the river waters. Here, we studied uranium speciation in sediments from two sampling points of the Flix water reservoir and at depths from 5 to 113 cm. We used room temperature time-resolved laser fluorescence spectroscopy and a three-step sequential extraction procedure described by the Standards, Measurements, and Testing Programme of the European Union. We found that uranium was mainly present in the sediment samples as meta-autunite [Ca(UO2)2(PO4)2·10–12H2O], whose low solubility will result in a low release of uranium to the river waters. In addition, we found that some uranium was linked to sediments by forming surface complexes. We therefore made the first study of uranium speciation in the sediments of the Flix water reservoir.  相似文献   

12.
Removal of cadmium(II), lead(II), and chromium(VI) from aqueous solution using clay, a naturally occurring low-cost adsorbent, under various conditions, such as contact time, initial concentration, temperature, and pH has been investigated. The sorption of these metals follows both Langmuir and Freundlich adsorption isotherms. The magnitude of Langmuir and Freundlich constants at 30°C for cadmium, lead, and chromium indicate good adsorption capacity. The kinetic rate constants (K ad) indicate that the adsorption follows first order. The thermodynamic parameters: free energy change (ΔG o), enthalpy change (ΔH o), and entropy change (ΔS o) show that adsorption is an endothermic process and that adsorption is favored at high temperature. The results reveal that clay is a good adsorbent for the removal of these metals from wastewater.  相似文献   

13.
 The accumulation and depuration of Cs in the green mussels (Perna viridis) commonly found in the subtropical and tropical waters were studied under the laboratory conditions using radiotracer techniques. Following an initial rapid sorption onto the mussel's tissues, uptake of Cs exhibited linear patterns over a short exposure time (8 h) at different ambient Cs concentrations. The concentration factor was independent of ambient Cs concentration. The calculated uptake rate and initial sorption constant of Cs were directly proportional to the ambient Cs concentration. The calculated uptake rate constant from the dissolved phase in the mussels was as low as 0.026 l g−1 d−1. Uptake rates of Cs in the mussels were inversely related to the ambient salinity. Uptake increased about twofold when the salinity was reduced from 33 to 15 ppt. The effect of salinity on Cs uptake was primarily due to the change in ambient K+ concentration. The uptake rate decreased in a power function with increasing tissue dry weight of the mussels, although the initial sorption was not related to the mussel's body size. The efflux rate constant of Cs in the mussels was 0.15 to 0.18 d−1, and was the highest recorded to date among different metals in marine bivalves. The efflux rate constant also decreased in a power function with increasing tissue dry weight of mussels. A simple kinetic model predicted that the bioconcentration factor of Cs in the green mussels was 145, which was higher than measurements taken in their temperate counterparts. The bioconcentration factor also decreased in a power function with increasing tissue dry weight of mussels. Received: 27 October 1999 / Accepted: 16 June 2000  相似文献   

14.
Uranium is a very toxic and radioactive element. Removal of uranium from wastewaters requires remediation technologies. Actual methods are costly and ineffective when uranium concentration is very low. Little is known about the enhancement of sorption of uranyl ions by phosphate ions on aluminosilicates. Here, we studied sorption of uranyl acetate on red clay in the presence of phosphates. The concentration of U(VI) ranged 0.0001–0.001 mol/L, whereas the concentration of PO4 3? was constant at 0.0001 mol/L. We designed a new method for the analysis of ternary surface complexes. We observed for the first time a remarkable improvement of U(VI) sorption on red clay under the influence of phosphates. We also found that at least two different ternary surface complexes U(VI)–phosphate–clay are formed in the sorbent phase. The complexation of UO2 2+ cations by phosphate ligands in the sorbent phase was confirmed by the X-ray photoelectron spectra of U 4f electrons.  相似文献   

15.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2–8 for bentonite and 2–6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   

16.
The crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta were exposed for 40 d to uranium (1.5 to 10 mg l-1) in continuous-flow sea water in separate starved and fed treatments, and the kinetics of uranium bioaccumulation were estimated from an exponential model. Starved and fed crabs took up U at a similar rate, which suggests that sea water was the major source of U to the crab; the fed crabs excreted U more rapidly than the starved crabs and this led to a lower net uptake of U by fed crabs. Fed and starved winkles took up U at similar rates and excreted it at similar rates, so the sea water was also the major source of U to winkles. Crabs took up more U than winkles; the concentration factors were 7 to 18 and 4, respectively. Uranium turnover was quite slow for both species (11 to 36 d) as it was also for winkle shells (6 d); this suggests that the rate-limiting processes which control turnover are biological (e.g. growth or tissue replacement) or physical (e.g. diffusion into the shell) rather than chemical (e.g. precipitation, adsorption or exchange). There was no effect of increasing U concentration in water on the U kinetic parameters.  相似文献   

17.
沉水植物黑藻对沉积物氨氮吸附/释放特征的影响   总被引:5,自引:0,他引:5  
氮素是主要的湖泊营养盐,而沉水植物作为湖泊生态系统主要的组成部分,对系统中氮素的跨界面迁移有着重要的影响。在实验室模拟条件下,通过沉积物氨氮释放动力学、吸附热力学和吸附动力学实验,研究了沉水植物黑藻(Hydrilla verticilla)对沉积物氨氮吸附/释放特征的影响,得到如下结论:(1)一级动力学反应模型能较好地拟合沉积物氨氮释放的动力学过程,种植沉水植物没有影响氨氮释放的趋势,但增强了沉积物释放氨氮的能力;(2)分别用多个模型对沉积物氨氮吸附热力学和动力学过程进行拟合,结果均表明种植沉水植物以后,沉积物对氨氮吸附的趋势没有影响,但吸附强度有所下降。  相似文献   

18.
We quantified the nitrogen and enzyme hydrolyzable amino acid (EHAA) concentrations of sediments prior to and after corals sloughed, ingested, and egested sediments layered onto their surfaces, for the three coral species Siderastrea siderea, Agaricia agaricites, and Porites astreoides in Jamaica. The percent nitrogen of the sediments egested by all three species was lower than in the sediments available to the corals. Additionally, the sediments sloughed (not ingested) by A. agaricites and P. astreoides were lower in percent nitrogen, while the sediments sloughed by S. siderea had the same percent nitrogen as that of the available sediments. The percent nitrogen of the sediments sloughed and egested by P. astreoides showed significant negative and positive relationships, respectively, to increasing sediment loads, while the percent nitrogen of the sediments sloughed and egested by both S. siderea and A. agaricites showed no relationship to sediment load. EHAA concentrations were not significantly different between the sloughed and available sediments but were significantly lower in the sediments egested by S. siderea and A. agaricites (EHAA concentrations were not measured for P. astreodies sediment fractions). Comparisons of the nitrogen and EHAA concentrations in the sloughed and egested sediments to what was available prior to coral processing show that maximum ingestion was between 0.1 and 0.2 µg N µg–1 coral N cm–2 and between 0.5 and 0.6 µg EHAA·cm–2. Maximum assimilation efficiencies were estimated to be 30–60% of the available nitrogen. The data show that corals ingest and alter the nitrogen concentration of particles that land on their surfaces. The corals abilities to process these sediments, and the sediments possible contributions to coral nutrition, are discussed based on these results.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

19.
Sorption isotherms of galaxolide (HHCB) of different fractions from two sediments with different mineral and organic carbon contents were determined to compare HHCB sorption behavior and contribution to the total sorption. The HHCB sorption isotherms that used the batch equilibration method were studied on different sediments of different fractions. The sorption isotherms of 600°C heating fractions were detailed using the linear model, while the other fractions were nonlinear and fitted well with the Freundlich model. The dissolved organic carbon (DOC) removed, NaOH extracted, and 375°C heating fractions showed more nonlinear sorption than the original sediments, which suggested more heterogeneous sorption sites in these fractions. Compared to the original sediments, the 375°C heating fractions had higher carbonnormalized distribution coefficient (K oc) values, indicating a higher sorption affinity for HHCB. Among the different sediment fractions, the contribution of the 600°C heating fractions to the overall sorption were the lowest (< 20%), while the 375°C heating fractions were the highest (up to 85%).  相似文献   

20.
Recently collected data for radon levels in houses in Devon and Cornwall are compared with geological and geochemical information. The region is underlain by granites intruded into folded sedimentary rocks. The highest incidence of affected houses is on granites. The granites are characterised by moderate uranium concentrations, a deep weathering profile and uranium in mineral phase which is easily weathered. However, while the uranium may be removed, radium, the immediate precursor of radon, can remain in situ. Radon is emanated easily from the host rock, and high values of radon in ground and surface waters and soil gases have been detected. The granite areas are also characterised by high values of uranium in stream sediments and waters. In contrast, other zones of high uranium in stream sediment samples do not necessarily exhibit high house radon concentrations, especially when underlain by relatively impermeable rocks. Permeable ground can give rise to high incidences, of affected houses despite having uranium levels close to the crustal abundance. It is concluded that the most efficient method of identifying zones of high radon potential is the soil gas radon survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号