首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Precipitation chemistry was studied in the Metropolitan Region of Rio de Janeiro (MRRJ). This study reveals that rainwater in the MRRJ is affected by emissions of air pollutants and provides essential data for future estimates of regional biogeochemical cycles and the impacts of acid deposition on tropical ecosystems. The volume-weighted mean (VWM) pH was 4.77, varying from 3.50 to 6.85. Sea-salt aerosols were the dominant sources of the Na+, Cl- and Mg2+. Excess SO4(2-), Ca2+ and K+ comprised 82, 91, and 87% of their total VWM concentrations, respectively. There were very strong correlations (r > 0.75, P > 0.01) for NO3- and H+, NO3- and excess(exc-)SO4(2-), NH4+ and exc-K+, and exc-SO4(2-) and exc-Ca2+, suggesting causal relationships between these ion pairs. The VWM concentrations of all major ions, except H+, were higher in the dry season, with dry to wet VWM concentration ratios varying from 1.1 (NH4+) to 4.7 (for total K+).  相似文献   

2.
The annual average concentrations (1986-1997) of the major ions SO4(2-), NO3-, Cl-, NH4+, Na+, Mg2+, Ca2+, and K+ in precipitation are analyzed for selected EMEP stations. The objective is to determine the ion patterns or typologies in precipitation by principal component analysis (PCA) combined with a cluster analysis. SO4(2-) and NO3- ions are predominant in central and eastern Europe. This area corresponds to high emissions of SO2 and NO2. Sea spray ions are predominant in coastal sites. The soil components show an important contribution in southern Europe, possibly due to the soil dust transported from northern Africa.  相似文献   

3.
Major ions (Cl-, NO3(-), SO4(2-), Ca2+, Mg2+, Na+, K+ and NH4(+)) were analysed in wet and dry deposition samples collected for 2 years using a polyethylene bottle and funnel collector at Agra in India. The deposition of ionic components (Ca2+ and Mg2+) derived from natural sources i.e. soil were higher than those of anthropogenic origin. In rainwater samples, non-sea-salt fraction was found to be 60-90%. In both wet and dry deposition Ca2+ was found to be the dominant ion which may be due to its large particle diameter. Results suggest that most of the acidity, which occurs due to NO3(-), SO4(2-) and Cl- is neutralized by alkaline constituents, which originate from airborne local soil and dust transported from the Thar desert. Acid neutralizing capacity of soil has also been quantified and found to be 33 x 10(3) neqg(-1). Using deposition data, the critical load for acidity of soil with respect to Ashoka and Eucalyptus was evaluated. The present level of deposition of S and N was found to be much lower than critical loads calculated for S and N. Critical load of exceedance in terms of deposition acidity was also calculated and found to be negative. This indicates that with respect to these species, the ecosystem is protected at the current level of deposition.  相似文献   

4.
Fang GC  Wu YS  Chang SY  Rau JY  Huang SH 《Chemosphere》2006,64(8):1253-1263
The characterization for water-soluble species of total suspended particulate (TSP), dry deposition flux, and dry deposition velocity (V(d)) were studied at Taichung Harbor (TH) and Wuchi traffic sampling sites at offshore sampling site near Taiwan Strait of central Taiwan during March 2004-January 2005. The average concentrations of TSP and dry deposition flux at the TH sampling site were higher than at the WT sampling site during the sampling period. The samples collected were analyzed by a ion chromatography (DIONEX-100) for the ionic species (Cl(-), SO(4)(2-), NO(3)(-), NH(4)(+), Na(+), Ca(2+), and Mg(2+)) analysis. The dominant ionic species for TSP are SO(4)(2-), NO(3)(-), and NH(4)(+) of the total mass of the inorganic ions at both sampling sites. In addition, the results indicated that the NH(4)(+), NO(3)(-) and SO(4)(2-) showed higher concentrations in winter and lower in summer for both TH and Wuchi sampling sites. Statistical methods such as correlation coefficient and principal component analysis were also used to identify the possible pollutant source.  相似文献   

5.
Bayraktar H  Turalioglu FS 《Chemosphere》2005,59(11):1537-1546
Seasonal variations in the chemical characteristics of wet and bulk deposition samples collected in Erzurum were investigated for the period March 2002-January 2003. Major cations (Ca2+, K+, Mg2+) and major anions (SO4(2-),NO3-) were determined in bulk and wet deposition samples; pH was also measured in wet deposition. The average pH of the wet deposition at Erzurum was 6.6 due to extensive neutralization of the acidity. A strong relationship between pH and SO4(2-) concentrations was observed in all seasons; however, only a weak relationship was found between pH and NO3-. On a seasonal basis, the correlation between Ca2+ and SO4(2-) concentrations was stronger in winter than in summer. Seasonal variations of ions were examined in both wet and bulk deposition samples. Although maximum concentrations of anions generally occurred during winter and spring, cation concentrations peaked in summer for both wet and bulk deposition. Results indicated that Ca2+ was the dominant cation and SO4(2-) the dominant anion in all deposition samples at Erzurum. Even though correlations among the crustal ions (calcium, magnesium and potassium) were high, the relationship between anthropogenic ions (sulfate and nitrate) was less clear in bulk deposition.  相似文献   

6.
This work focuses on bulk deposition in a rural area located around a large coal-fired power station in northeast Spain. Deposition chemistry was characterised by high concentrations of SO(4)(2-), Ca(2+) and NH(4)(+), which were relatively high when compared with other rural areas. Monthly bulk deposition evolution of major ions was the result of two superimposed patterns: one pattern related to the volume of precipitation and the other showed the seasonal influence of the major ionic sources. A major local origin was attributed to bulk deposition of SO(4)(2-), NH(4)(+), and Ca(2+), whereas a relatively higher contribution of an external source was deduced for NO(3)(-), Na(+) and Cl(-). The SO(4)(2-) concentrations showed a significant correlation with the local SO(2) emissions. High levels of Ca(2+) were due to the high alkalinity of soils in the study area, although an external origin was attributed to the frequent air mass intrusions from the Sahara. Sources of NH(4)(+) were related to intensive livestock farming in the area. Total suspended particles exert a marked influence over bulk deposition and neutralisation. Thus, despite the high emissions of SO(2) in the area, neutral pH values have always been attained given that the concentrations of Ca(2+) and NH(4)(+) account for the total neutralisation of NO(3)(-) and SO(4)(2-).  相似文献   

7.
Wet deposition and related rainwater chemistry were studied at the Itatiaia massif, on which is settled the Itatiaia National Park (INP). Samples were simultaneously collected on a weekly basis over 12 months, using automated wet and dry samplers, at the INP-Headquarters (INP-Hq; altitude=820 m) and the Itatiaia Plateau (It-Pt; altitude=2460 m). Conductivity, pH, Na(+), K(+), Mg(2+), Ca(2+), NH(4)(+), Cl(-), NO(3)(-) and SO(4)(2-) were determined in 36 rainwater samples. Volume-weighted mean (VWM) pH was lower at the INP-Hq (4.9) than at the It-Pt (5.3). Very strong correlation between Cl(-) and Na(+) was found for the INP-Hq (r=0.99). At the Itatiaia massif, SO(4)(2-), NO(3)(-), and NH(4)(+) comprised together about 60% of the total inorganic ions and appear to exert the major control on rainwater pH.  相似文献   

8.
Composition of wet deposition in Kaynarca,Turkey   总被引:9,自引:0,他引:9  
In this work, composition of wet deposition in Kaynarca, Turkey is studied by collecting precipitation samples during more than a 2-year period. August 1993-November 1995. Concentrations of the main cations Na+, Mg2+, Ca2+, K+, NH4+ and the main anions Cl-, NO3- and SO4(2-) together with pH were studied. The average pH value at Kaynarca was near neutral, 5.59. Results indicated that SO4(2-) concentration in precipitation was very high, as was Ca2+, neutralizing the acidity. Acidic wet deposition samples were generally obtained in winter. Enrichment factors for sea and soil indicate the strong effects of sea and soil, specifically limestone on the composition of precipitation. Non-sea salt fractions of SO4(2-) were found to range from 0.955 to 0.980, showing the effect of non-sea sources, especially emissions from fossil-fuel combustion, on the pH of samples. Trajectory analysis showed that cyclones originating from northwestern, central and eastern parts of Europe have generally high sulfate and nitrate concentrations and low pH.  相似文献   

9.
The importance of dry deposition was assessed at perimeter and interior locations in two vegetative canopies. Dry deposition was measured directly by washing particles from leaves. Ambient particles and gases were also collected at both locations within the canopies. Ambient concentrations on the canopy interior were decreased relative to perimeter concentrations due to dry deposition scavenging by the canopy. The least scavenging was found for SO(4)(2-) and NH(4)(+) and the highest scavenging was found for HNO(3). Dry deposition of all species was higher to perimeter vegetative and surrogate surfaces than to interior surfaces, due both to the lower concentrations and the lower wind speeds in the sheltered interior. Deposition velocities compared well with other experimental and theoretical values.  相似文献   

10.
Bulk deposition composition and pine branch washing were measured from April 1999 to March 2000 on the east coast of Spain. The main objective was to characterise N deposition patterns with special emphasis on dry deposition. Bulk deposition in the region is dominated by neutralisation processes by Ca2+ and HCO3-, ClNa of marine origin and a high correlation between NO3- and SO4(2-). SO4(2-) concentrations show a decrease with respect to previous studies in the region in agreement with generalized sulfur emission decreases while the remaining ions, including NO3-, are higher due to their general increase as well as to the inclusion of dry deposition in bulk collectors in the present study. An enrichment in NO3- has been observed in dry deposition composition branch washing) with respect to bulk deposition, while an impoverishment has been observed in the case of NH4+. Annual bulk deposition varies between 7.22-3.1 and 3.5-1.8 Kg ha(-1) year(-1) for S- SO4(2-) and N- NO3-, respectively. N total deposition goes from 9.78 to 6.8 Kg ha(-1) year(-1) at most stations, with the lowest deposition at the control station and Alcoi. The relative dry deposition with respect to the total was over 40% at most stations, going up to 75% at the southern station. N-deposition is expected to be higher considering that N-NH4+ deposition has been underestimated in this study.  相似文献   

11.
During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.  相似文献   

12.
Chen SJ  Hsieh LT  Tsai CC  Fang GC 《Chemosphere》2003,53(1):29-41
The concentrations of atmospheric PM10 on days with episodes of pollution were examined at four different sampling sites (CC, DL, LY, and HK) in southern Taiwan. The related to particulates water-soluble ionic species (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)), carbonaceous species (EC and OC) and metallic species (Zn, Ni, Pb, Fe, Mn, Al, Si, V) were also analyzed. On the episode days of this study, the PM10 mass concentration ranged from 155 to 210 microgm(-3), from 150 to 208 microgm(-3), from 182 to 249 microgm(-3), and from 166 to 228 microgm(-3) at CC, DL, LY, and HK, respectively. The results indicate that the dominant water-soluble species were SO4(2-), NO3-, NH4+, and Cl- at the four sampling sites on these days. Moreover, the high sulfate and nitrate conversion values (SOR and NOR) presented herein suggest that secondary formations from SO2 to SO4(2-) and from NO2 to NO3- are present in significant quantities in the atmosphere of southern Taiwan on episode days. In particular, high SOR and NOR verified that both SO4(2-) and NO3- dominated the increase of atmospheric PM10 concentration in southern Taiwan on episode days.  相似文献   

13.
Hydrogen ions in precipitation vary primarily with (SO4 + NO3) concentration. However the slope of the H: (SO4 + NO3) relation for high concentrations (0.60 and 0.61) is twice that at low concentrations (0.32 and 0.22) in European and US samples respectively. Sulphuric and nitric acid dominate precipitation in the US. Precipitation in Europe, although nearly equally acid, is dominated by NH4+, Ca2+, and Mg2+ salts at total ionic concentrations 2 and 3 times higher. Ion concentrations in precipitation, other than H, are proportional to their respective emission fluxes.  相似文献   

14.
The objective of the National Dry Deposition Network is to determine patterns and trends of dry deposition for various sulfur and nitrogen species at roughly 50 locations throughout the continental USA. Each site is equipped for collection of continuous meteorological and ozone data and weekly average concentrations of SO4(2-), NO3-, SO2 and HNO3, using a three-stage filter pack. Results from 40 eastern US sites operational throughout 1989 show species-dependent variability from site to site, season to season, and day to night. Annual average concentrations of atmospheric SO4(2-), NO3-, SO2 and HNO3 ranged from 2.7 to 7.9, 0.2 to 3.9, 2.4 to 23.2 and 0.7 to 3.6 microg/m(-3), respectively. Seasonal variability was considerable for all constituents. Day/night data indicate that SO2 and HNO3, but not SO4(2-) and NO3-, are typically found at moderately to substantially lower concentrations at night, especially during spring and summer. Estimated dry deposition for SO2 and HNO3 appear to be much greater than for SO4(2-) and NO3-, respectively. Comparison of measured wet deposition and estimated dry deposition at numerous sites suggests that the two are similar in magnitude over much of the eastern USA.  相似文献   

15.
The chemical composition of throughfall and canopy leaching, as well as the acid neutralizing capacity and alkalinity depended on the age of Norway spruce (Picea abies Karst) stands and season of the year. A higher amount of sulphur and strong acids was deposited to the soil in the older age classes. Concentrations of SO(4)(2)(-), K(+), H(+), Mn(2+), Fe(2+) and Zn(2+) in throughfall were higher than in bulk precipitation in any season. This suggests that these ions were washed out or washed from the surface of needles and/or barks. The other ions NO(3)(-), NH(4)(+), Ca(2+) and Mg(2+) were retained by the canopy, in particular Ca(2+) and Mg(2+) during the growing season in young stands. Principal component analysis identified five factors responsible for the data structure and suggested the major anthropogenic emission sources were acidic emission (SO(4)(2)(-)+NO(3)(-)), heavy metals-dust particles (Fe(2+)+Mn(2+)+Zn(2+)), ammonium (NH(4)(+)) and H(+), while the natural-origin emission was mineral dust (Na(+)+K(+)+Ca(2+)+Mg(2+)).  相似文献   

16.
In this study, we present approximately two years (January 1999-December 2000) of atmospheric NH3, NH4+, HCl, Cl-, HNO3, NO3-, SO2, and SO4= concentrations measured by the annular denuder/filter pack method at an agricultural site in eastern North Carolina. This site is influenced by high NH3 emissions from animal production and fertilizer use in the surrounding area and neighboring counties. The two-year mean NH3 concentration is 5.6 (+/-5.13) microg m(-3). The mean concentration of total inorganic PM2.5, which includes SO4=, NO3-, NH4+, and Cl-, is 8.0 (+/-5.84) microg m(-3). SO4=, NO3-, NH4+, and Cl- represent, respectively, 53, 24, 22, and 1% of measured inorganic PM2.5. NH3 contributes 72% of total NH3 + NH4+, on an average. Equilibrium modeling of the gas+aerosol NH3/H2SO4/HNO3 system shows that inorganic PM2.5 is more sensitive to reductions in gas + aerosol concentrations of sulfate and nitrate relative to NH3.  相似文献   

17.
In the vicinity of a large ammonia emission area, dry and wet deposition of acidifying and eutrophying compounds onto Douglas Fir forests was studied by sampling throughfall, stemflow and bulk precipitation. Deposition amounts of NH(4)(+) and SO(4)(2-) were recognised to be among the highest of Central Europe, resulting in extremely high inputs of (potential) acid to the forest soils (13.1 kEq ha(-1) year(-1)). The contribution of NH(3) emissions from agriculture to the total acid deposition to the forests was 52%. The total nitrogen deposition amounted to 115.0 kg ha(-1) year(-1), 83% originating from NH(3) emissions and 17% from NO(x) emissions. Calculated mean dry deposition velocities of NH(3) and SO(2) were much larger than reported in the literature. A synergistic effect between NH(3) and SO(2) in the process of dry deposition is suggested and evidence for this effect is discussed. When deposition models do not take this interaction into account, they will underestimate NH(3) and SO(2) deposition amounts in areas with intensive animal husbandry.  相似文献   

18.
Dry deposition contributes a substantial part of the total deposition of acidic pollutants and acid precursors to agricultural systems. However, because of the relative intractability of measurement of dry deposition fluxes, little work has been done to directly quantify dry inputs of pollutants to crops. In this research, foliar surface sampling ('leaf-washing') methods were developed and shown to be a practical and fairly precise means of monitoring the accumulation of dry-deposited SO4(2-) and NO3- on plant surfaces. Leaching of these ions from plant tissues was shown to be negligible; however, uptake by plants (e.g. stomatal gas exchange of SO2 or HNO3 and/or assimilation of surface accumulations of materials) is not accounted for by the sampling method. The significance of dry deposition to modification of the chemical microenvironment of leaf surfaces appears to be a factor of 3 to 20 or more greater than that of wet deposition alone. This is due to the cyclic reactivation of accumulated materials by dew and light rains, which may dissolve and mobilize, but not remove, the pollutant surface deposit. Therefore, while dry deposition of SO2 and SO4(2-) containing particles may contribute only part of the total mass of sulfur inputs to crop systems, the exposure of plant surface tissue to pollutants can be dominated by the dry-deposited material. The alteration of leaf surface chemistry may contribute to possible stress-producing mechanisms such as reduction of cuticular integrity, cellular injury and death, enhanced leaching of primary and secondary metabolites, and changes in pathogen infection efficiency.  相似文献   

19.
The catchments of East and West Bear Brooks, Maine, USA, have been hydrologically and chemically monitored for 3.5 years. Stream chemistries and hydrographs are similar. These clear water streams are low in ANC (0-70 microeq litre(-1)), with variations caused by changing concentrations of base cations, SO4, NO3 and Cl. The latter range between 90-120, 0-40 and 65-75 microeq litre(-1), respectively. The West Bear catchment is being treated with six applications per year of dry (NH4)2SO4 at 1800 eq ha(-1) year(-1). After one year of treatment, the response of the stream chemistry and the response modelled by MAGIC are similar. Retentions of NH4 and SO4 are nearly 100% and greater than 80%, respectively. The additional flux of SO4 is compensated principally by an increased Ca concentration. Episodes of high discharge in the treated catchment are now characterized by lower ANC and pH, and higher Al than prior to the manipulation. Concentrations of NO3 have increased about 10 microeq litre(-1) during the dormant season, presumably due to additional nitrification of N from NH4. Discharge-chemistry relationships indicate that changes in stream chemistry, except for NO3, are dominated by ion exchange reactions in the upper part of the soil profile.  相似文献   

20.
The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4+; 20%), coarse nitrate (NO3-; 16%), fine NO3 (5%), and coarse NH4+ (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号