首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gasoline distribution in the metropolitan area of Mexico City (MAMC) represents an area of opportunity for the abatement of volatile organic compound (VOC) emissions. The gasoline distribution in this huge urban center encompasses several operations: (1) storage in bulk and distribution plants, (2) transportation to gasoline service stations, (3) unloading at service stations' underground tanks, and (4) gasoline dispensing. In this study, hydrocarbon (HC) emissions resulting from breathing losses in closed reservoirs, leakage, and spillage from the operations just listed were calculated using both field measurements and reported emission factors. The results show that the contribution of volatile HC emissions due to storage, distribution, and sales of gasoline is 6651 t/year, approximately 13 times higher than previously reported values. Tank truck transportation results in 53.9% of the gasoline emissions, and 31.5% of emissions are generated when loading the tank trucks. The high concentration of emissions in the gasoline transportation and loading operations by tank trucks has been ascribed to (1) highly frequent trips from distribution plant to gasoline stations, and vice versa, to cope with excessive gasoline sales per gasoline station; (2) low leakproofness of tank trucks; and (3) poor training of employees. In addition, the contribution to HC evaporative and exhaust emissions from the vehicles of the MAMC was also evaluated.  相似文献   

2.
Abstract

This study analyzes the volatile organic compounds (VOCs) in the ambient air around gasoline stations during rush hours and assesses their impact on human health. Results from this study clearly indicate that methyl tertiary butyl ether (MTBE), toluene, and isobutane are the major VOCs emitted from gasoline stations. Moreover, the concentrations of MTBE and toluene in the ambient air near gasoline stations are remarkably higher than those sampled on surrounding roads, revealing that these compounds are mainly released from gasoline stations. The concentration of VOCs near the gasoline stations without vapor recovery systems are ~7.3 times higher than those around the gasoline stations having the recovery systems. An impact on individual health and air quality because of gasoline station emissions was done using Integrated Risk Information System and Industrial Source Complex Short Term model.  相似文献   

3.
Exposure estimates based solely on proximity to air pollution sources are not sound and require confirmation. Accordingly, since a very limited amount of actual data for this type of exposure estimate is currently available, this study was conducted to provide actual data on residents' exposure to two important gasoline constituents [methyl tertiary butyl ether (MTBE) and benzene] relative to their proximity to roadside service stations. The results confirmed that residents in neighborhoods near service stations are exposed to elevated ambient MTBE and benzene levels compared with those living farther from such a source. However, it was also found that the presumed elevated outdoor benzene levels (a mean of 1.7 ppb) even in close proximity to service stations did not exceed the indoor levels (a mean of 2.2 ppb) of exposure for those living nearby. Regardless of residents' distance from service stations, an indoor source (cigarette smoking) appeared to be the major contributor to their benzene exposure. Conversely, for MTBE, roadside service stations were found to be the major contributor to residents' exposure. In addition, the residents close to the stations were exposed to elevated indoor and outdoor MTBE levels. The sampling period (daytime and nighttime) and season (winter and summer) were additional parameters for the outdoor MTBE and benzene levels and the indoor MTBE levels. Meanwhile, the breathing zone air concentrations of service station attendants for both MTBE and benzene were significantly higher than those of drivers (p < 0.05). In addition, the breathing zone concentrations were significantly higher during summer than during winter for both drivers and attendants (p < 0.05).  相似文献   

4.
加油站油气扩散与回收效果的数值分析   总被引:1,自引:0,他引:1  
加油站排放出的油气是有毒有害的气体。目前控制油品蒸发损耗的有效方法是采用油气回收系统。基于湍流模式理论,采用FLUENT软件,模拟加油站在使用油气回收系统前后空气中油气浓度分布情况及风对油气扩散的影响,得到油气浓度等值面图、直线及点上浓度变化曲线图。模拟结果表明,实施油气回收,其大气净化率可高达95%以上,因此明显减小加油站火灾隐患及环境污染,并可减少经济损失及节约加油站占地面积。另外,风对油气扩散稀释有明显的影响,如距排放口下风侧5 m处,相对于风速1 m/s,风速为5、8 m/s时的大气净化率分别为54%、71%。虽然无法降低油气排放总量,但是随着风速的增加大气净化率随之变大,可以减少油气浓度值过高造成的危害。  相似文献   

5.
Abstract

On-board emission measurements were performed on 49 light-duty gasoline vehicles in seven cities of China. Vehicle-specific power mode distribution and emission characteristics were analyzed based on the data collected. The results of our study show that there were significant differences in different types of roads. The emission factors and fuel consumption rates on arterial roads and residential roads were approximately 1.4–2 times those on freeways. The carbon monoxide, hydrocarbon, and nitrogen oxides emission factors of Euro II vehicles were on average 86.2, 88.2, and 64.5% lower than those of carburetor vehicles, respectively. The new vehicle emission standards implemented in China had played an important role in reducing individual vehicle emissions. More comprehensive measures need to be considered to reduce the total amount of emissions from vehicles.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m?3) with four- and five-ring PAHs having ~80 % contribution. Total PAHs were dominated by carcinogenic species (~75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day?1) followed by monsoon (232.59 ng day?1) and summer (171.08 ng day?1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours?>?commuting to school?>?resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r?=?0.94, p?<?0.001) with the daily inhalation exposure level of school children. A conservative estimate of ~11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.  相似文献   

7.
Characteristics of real-world vehicular emissions in Chinese cities   总被引:2,自引:0,他引:2  
On-board emission measurements were performed on 49 light-duty gasoline vehicles in seven cities of China. Vehicle-specific power mode distribution and emission characteristics were analyzed based on the data collected. The results of our study show that there were significant differences in different types of roads. The emission factors and fuel consumption rates on arterial roads and residential roads were approximately 1.4-2 times those on freeways. The carbon monoxide, hydrocarbon, and nitrogen oxides emission factors of Euro II vehicles were on average 86.2, 88.2, and 64.5% lower than those of carburetor vehicles, respectively. The new vehicle emission standards implemented in China had played an important role in reducing individual vehicle emissions. More comprehensive measures need to be considered to reduce the total amount of emissions from vehicles.  相似文献   

8.
Residents in neighborhoods near a service station and/or major roadway would be expected to be exposed to elevated ambient volatile organic compound (VOC) levels compared to those further away from such source(s). We confirmed this and examined whether the anticipated high outdoor levels near a service station and/or major roadway outweighed the indoor levels as a factor for the exposure of nearby residents. Unlike the outdoor air concentrations, neither the indoor air nor breath concentrations were different for the two residential zones tested. The outdoor concentrations were higher during the daytime than at night, however, the indoor air and breath concentrations showed no difference between the two periods. The elevated outdoor levels nearby service stations were not identified as a major contributor to the exposure of housewives living in close proximity. Instead, it appeared that the indoor air levels were the major contributor to housewives’ exposure in both residential zones. This was further supported by the finding that the indoor levels were actually higher than the outdoor levels, and that there was a significant correlation between the indoor and breath levels.  相似文献   

9.
城市天然气加气站噪声影响分析及噪声控制技术   总被引:1,自引:0,他引:1  
城市天然气加气站位于城市道路和居民区周边。由于加气站地理位置特殊,声源复杂,与周边道路对环境的影响叠加,还要考虑通风散热等问题,噪声治理难度大。目前,国内关于城市天然气加气站的噪声控制研究的报道较少。本研究以合肥市长江西路天然气加气站为例,根据城市天然气加气站加气工艺噪声源及邻近交通噪声对周围环境进行叠加影响预测,根据预测结果和通风散热等工艺要求设计冷却塔安装进风、出风消声器和隔声罩,压缩机安装局部通风隔声罩及压缩机房东墙内安装隔声墙及通风隔声窗等措施。经检验,研究结果好于《工业企业厂界噪声排放标准(GB12348-2008)》中的2类标准的夜间50 dB(A)的标准。该研究设计技术工艺、参数先进合理,费用低且实际简单,为国内天然气加气站噪声预测及治理提供较好的示范作用。  相似文献   

10.
ABSTRACT

Positive Matrix Factorization analysis of PM2.5 chemical speciation data collected from 2015–2017 at Washington State Department of Ecology’s urban NCore (Beacon Hill) and near-road (10th and Weller) sites found similar PM2.5 sources at both sites. Identified factors were associated with gasoline exhaust, diesel exhaust, aged and fresh sea salt, crustal, nitrate-rich, sulfur-rich, unidentified urban, zinc-rich, residual fuel oil, and wood smoke. Factors associated with vehicle emissions were the highest contributing sources at both sites. Gasoline exhaust emissions comprised 26% and 21% of identified sources at Beacon Hill and 10th and Weller, respectively. Diesel exhaust emissions comprised 29% of identified sources at 10th and Weller but only 3% of identified sources at Beacon Hill. Correlation of the diesel exhaust factor with measured concentrations of black carbon and nitrogen oxides at 10th and Weller suggests a method to predict PM2.5 from diesel exhaust without a full chemical speciation analysis. While most PM2.5 sources exhibit minimal change over time, primary PM2.5 from gasoline emissions is increasing on average 0.18 µg m?3 per year in Seattle.  相似文献   

11.
The chemical composition of emissions from the different anthropogenic sources of non-methane hydrocarbons (NMHC) is essential for modeling and source apportionment studies. The speciated profiles of major NMHC sources in Lebanon, including road transport, gasoline vapor, power generation, and solvent use were established. Field sampling have been carried out by canisters in 2012. Around 67 NMHC (C2 to C9) were identified and quantified by using a gas chromatograph equipped with a flame ionization detector. Typical features of the roadway emissions included high percentages of isopentane, butane, toluene, xylenes, ethylene, and ethyne. Gasoline evaporation profiles included high percentage of the C4–C5 saturated hydrocarbons reaching 59 %. The main compounds of the power generator emissions are related to combustion. Toluene and C8–C9 aromatics were the most abundant species in emissions from paint applications. Finally, the impact of the use of region-specific source profile is tackled regarding the implication on air quality.  相似文献   

12.
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m3, respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: ‘diesel’ (56.3 % of total PAHs on average), ‘gasoline’ (15.5 %), ‘wood combustion, and incineration’ (13 %), ‘industry’ (9.2 %), and ‘road soil particle’ (6.0 %). The four n-alkane source factors identified were: ‘petrogenic’ (65 % of total n-alkanes on average), ‘mixture of petrogenic and biomass burning’ (15 %), ‘mixture of biogenic and fossil fuel’ (11.5 %), and ‘biogenic’ (8.5 %). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4 % of total PAHs and 5.0 % of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.  相似文献   

13.
Fuels derived from non-petroleum renewable resources have raised interest due to their potential in replacing petroleum-based fuels, but information on their fate and effects in the terrestrial and aquatic environments in accidental spill scenario is limited. In this study, migration of four fuels (conventional diesel, conventional gasoline, renewable diesel NExBTL, and ethanol-blended gasoline RE85 containing maximum 85 % ethanol) as non-aqueous phase liquids (NAPL) in soil was demonstrated in a laboratory-scale experiment. Ecotoxicity data was produced for the same fuels. There was no significant difference in migration of conventional and renewable diesel, but gasoline migrated 1.5 times deeper and 7–9 times faster in sand than diesel. RE85 spread horizontally wider but not as deep (p?Eisenia fetida followed by ethanol-blended gasoline (LC50 1,643 mg/kg THC) and conventional diesel (LC50 2,432 mg/kg THC), although gasoline evaporated fast from soil. For comparison, the toxicity of the water-accommodated fractions (WAF) of the fuels was tested with water flea Daphnia magna and Vibrio fischeri, also demonstrating groundwater toxicity. The WAF of conventional gasoline and RE85 showed almost similar toxicity to both the aquatic test species. EC50 values of 1:10 (by volume) WAF were 9.9 %WAF (gasoline) and 9.3 %WAF (RE85) to D. magna and 9.3 %WAF (gasoline) and 12.3 %WAF (RE85) to V. fischeri. Low solubility decreased toxicity potential of conventional diesel in aquatic environment, but direct physical effects of oil phase pose a threat to organisms in nature. Renewable diesel NExBTL did not show clear toxicity to any test species.  相似文献   

14.
The purpose of this study was to derive a land-use regression model to estimate on a geographical basis ambient concentrations of nitrogen dioxide (NO2) in Montreal, Quebec, Canada. These estimates of concentrations of NO2 will be subsequently used to assess exposure in epidemiologic studies on the health effects of traffic-related air pollution. In May 2003, NO2 was measured for 14 consecutive days at 67 sites across the city using Ogawa passive diffusion samplers. Concentrations ranged from 4.9 to 21.2 ppb (median 11.8 ppb). Linear regression analysis was used to assess the association between logarithmic concentrations of NO2 and land-use variables derived using the ESRI Arc 8 geographic information system. In univariate analyses, NO2 was negatively associated with the area of open space and positively associated with traffic count on nearest highway, the length of highways within any radius from 100 to 750 m, the length of major roads within 750 m, and population density within 2000 m. Industrial land-use and the length of minor roads showed-no association with NO2. In multiple regression analyses, distance from the nearest highway, traffic count on the nearest highway, length of highways and major roads within 100 m, and population density showed significant associations with NO2; the best-fitting regression model had a R2 of 0.54. These analyses confirm the value of land-use regression modeling to assign exposures in large-scale epidemiologic studies.  相似文献   

15.
This paper provides an account of urban greenhouse gas (GHG) emissions from 40 countries in Europe and examines covariates of emissions levels. We use a “top-down” analysis of emissions as spatially reported in the Emission Dataset for Global Atmospheric Research supplemented by Carbon Monitoring for Action from 1153 European cities larger than 50 000 population in 2000 (comprising >81 % of the total European urban population). Urban areas are defined spatially and demographically by the Global Rural Urban Mapping Project. We compare these results with “bottom-up” carbon accounting method results for cities in the region. Our results suggest that direct (Scopes 1 and 2) GHG emissions from urban areas range between 44 and 54 % of total anthropogenic emissions for the region. While individual urban GHG footprints vary from bottom-up studies, both the mean differences and the regional energy-related GHG emission share support previous findings. Correlation analysis indicates that the urban GHG emissions in Europe are mainly influenced by population size, density, and income and not by biophysical conditions. We argue that these data and methods of analysis are best used at the regional or higher scales.  相似文献   

16.
Abstract

Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organometallic compound used as an octane improver in unleaded gasoline. The combustion of MMT leads to the formation of manganese (Mn) oxides, mainly Mn3O4. The objective of this study is to assess the variations over time and space of respirable (MnR) and total (MnT) Mn in the urban atmosphere and to evaluate human exposure by inhalation. Two sampling sites were selected on the island of Montreal based on their local traffic density (municipal botanical garden, C-= 10,000–15,000 vehicles d-1; Montreal Waterworks, C+= 100,000–130,000 vehicles d-1). Air samplings were made during the day at stations located 10 m from the road using portable pumps, some of which were equipped with a cyclone. MnR and MnT and other metals were measured on Teflon filters by neutron activation. Mn exposure doses by inhalation were calculated using Monte–Carlo simulations. MnR and MnT average concentrations were significantly higher at site C+ (MnR = 0.024 µg m-3; MnT = 0.050 µg m-3) than at site C- (MnR= 0.015 µg m-3; MnT= 0.027 µg m-3). Temporal profiles at sites C+ and site C-were similar, with a coefficient of correlation of 0.24 for MnR and 0.26 for MnT. Trend analyses (ARIMA) also showed that the period of the week (work days vs. off days) was significantly related to MnR and MnT variations at both sites. The average exposure dose by inhalation to MnR and MnT ranged from 0.001 to 0.030 µg kg-1 day-1 and 0.001 to 0.05 µg kg-1 day-1. MnR and MnT concentrations reflected a positive relationship with traffic density. However, it remains difficult to attribute these results directly to the combustion of MMT in unleaded gasoline. On average, the MnR and MnT inhalation doses were 2 to 15 times lower than the reference dose (RfC) proposed by the U.S. Environmental Protection Agency (EPA) for the general population.  相似文献   

17.
Within the framework of the MYTIOR project in 2009, heavy metals and organic compounds contaminations were assessed in transplanted mussels in 16 different stations along the coasts of Libya. These stations were located at miles offshore industrial/urban sources but in open sea providing original results related to the background contamination rather than linked to a specific coastal source of pollutants. Results indicated mercury (Hg, 0.045–0.066 mg/kg dry weight (dw)), lead (Pb, 0.44–0, 71 mg/kg dw) and copper (Cu, 3.56–4.21 mg/kg dw) were in the same range or at lower value than control for all stations. Chromium (Cr) in Meleta (3.08 mg/kg dw) and Bomba (3.80 mg/kg dw) and Cadmium values in all stations (1.21–2.41 mg/kg dw) were above control. Meleta, stations from the gulf of Syrt and the three eastern stations were the most affected stations by nickel (max at 5.83 mg/kg dw in Syrt) when zinc was in the same range (141–197 mg/kg dw) and above the control (92 mg/kg dw) at all stations. Polycyclic aromatic hydrocarbon (PAH) levels were found in the range of 16.8–42.8 mg/kg (dry weight) indicating low levels along the Libyan coast with acenaphthene and benzo (a, b, k) pyrenes detected mainly in western Libya. The study of PAH ratios indicated a mixed petrogenic/pyrolytic origin. The only polychlorinated biphenyls (PCBs) found in Libya were PCB 101 in one location and PCB 153 in Tripoli, Garrapoli, Syrt, Ras Lanuf and Benghazi (1.2–1.9 μg/kg dw). Insecticides were lower than control in all stations except DDT, only detected in Misratah (3.5 μg/kg dw). Overall, the results indicated a low background contamination and a low pollution extent according to the environmental pressure occurring offshore the Libyan coast.  相似文献   

18.
Abstract

A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

19.
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in 18 surface sediment samples collected from Bizerte lagoon, Tunisia. The total concentrations of ten PCBs (∑PCBs) and of four OCPs (∑OCPs) in the sediments from this area ranged from 0.8 to 14.6 ng g?1 dw (average value, 3.9 ng g?1 dw) and from 1.1 to 14.0 ng g?1 dw (average value, 3.3 ng g?1 dw), respectively. Among the OCPs, the range of concentrations of dichlorodiphenyltrichloroethane and its metabolites (DDTs) and hexachlorobenzene (HCB) were 0.3–11.5 ng g?1 dw (1.9 ng g?1 dw) and 0.6–2.5 ng g?1 dw (1.4 ng g?1 dw), respectively. Compositional analyses of the POPs indicated that PCB 153, 138 and 180 were the predominant congeners accounting for 60 % of the total PCBs. In addition, p,p′-DDT was found to be the dominant DDTs, demonstrating recent inputs in the environment. Compared with some other regions of the world, the Bizerte lagoon exhibited low levels of PCBs and moderate levels of HCB and DDTs. The high ratios ΣPCBs/ΣDDTs indicated predominant industrial versus agricultural activities in this area. According to the established guidelines for sediment quality, the risk of adverse biological effects from such levels of OCPs and PCBs, as recorded at most of the study sites, was insignificant. However, the higher concentrations in stations S1 and S3 could cause biological damage.  相似文献   

20.
This study investigates the effects of several blends of gasoline and anhydrous ethanol on exhaust emission concentrations of carbon monoxide (CO), total hydrocarbons (HCs), and nitrogen oxides (NOx) from a small spark-ignited non-road engine (SSINRE). Tests were carried out for different air/fuel equivalence ratios as measured by lambda (λ). A 196 cm3 single-cylinder four-stroke engine-generator operating at a constant load of 2.0 kW was used; pollutant gas concentrations were measured with an automatic analyzer similar to those typically used in vehicle inspections. The results showed that as the ethanol content of the mixture increased the concentrations of CO, HCs, and NOx reduced by 15, 53, and 34%, respectively, for values of λ < 1 (rich mixture) and by 52, 31, and 16% for values of λ > 1 (lean mixture). Overall, addition of anhydrous ethanol to the gasoline helped to reduce emissions of the pollutant gases investigated, what contributes to photochemical smog reduction and quality of life in urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号