首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

2.
Organic carbon (OC) and elemental carbon (EC) concentrations, associated to PM10 and PM2.5 particle fractions, were concurrently determined during the warm and the cold months of the year (July–September 2011 and February–April 2012, respectively) at two urban sites in the city of Thessaloniki, northern Greece, an urban-traffic site (UT) and an urban-background site (UB). Concentrations at the UT site (11.3?±?5.0 and 8.44?±?4.08 14 μg m?3 for OC10 and OC2.5 vs. 6.56?±?2.14 and 5.29?±?1.54 μg m?3 for EC10 and EC2.5) were among the highest values reported for urban sites in European cities. Significantly lower concentrations were found at the UB site for both carbonaceous species, particularly for EC (6.62?±?4.59 and 5.72?±?4.36 μg m?3 for OC10 and OC2.5 vs. 0.93?±?0.61 and 0.69?±?0.39 μg m?3 for EC10 and EC2.5). Despite that, a negative UT-UB increment was frequently evidenced for OC2.5 and PM2.5 in the cold months possibly indicative of emissions from residential wood burning at the urban-background site. At both sites, cconcentrations of OC fractions were significantly higher in the cold months; on the contrary, EC fractions at the UT site were prominent in the warm season suggesting some influence from maritime emissions in the nearby harbor area. Secondary organic carbon, being estimated using the EC tracer method and seasonally minimum OC/EC ratios, was found to be an appreciable component of particle mass particularly in the cold season. The calculated secondary contributions to OC ranged between 35 and 59 % in the PM10 fraction, with relatively higher values in the PM2.5 fraction (39–61 %). The source origin of carbonaceous species was investigated by means of air parcel back trajectories, satellite fire maps, and concentration roses. A local origin was mainly concluded for OC and EC with limited possibility for long range transport of biomass (agricultural waste) burning aerosol.  相似文献   

3.
This study investigates the water-soluble ionic constituents (Na+, K+, NH4 +, Ca2+, Mg2+, Cl?, NO3 ?, SO4 2?) associated to PM2.5 particle fraction at two urban sites in the city of Thessaloniki, northern Greece, an urban traffic site (UT) and urban background site (UB). Ionic constituents represent a significant fraction of PM2.5 mass (29.6 at UT and 41.5 % at UB). The contribution of marine aerosol was low (<1.5 %). Secondary inorganic aerosols (SIA) represent a significant fraction of PM2.5 mass contributing to 26.9?±?12.4 % and 39.2?±?13.2 % at UT and UB sites, respectively. Nitrate and sulfate are fully neutralized by ammonium under the existing conditions. The ionic constituents were evaluated in relation to their spatial and temporal variation, their gaseous precursors, meteorological conditions, local and long-range transport.  相似文献   

4.
Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available.In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM10 and PM2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650–1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called “pulling equations”.ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m?3 (17%) in PM10, 2.2 μg m?3 (8%) of PM2.5 and 0.3 μg m?3 (2%) of PM1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total traffic emissions respectively in PM10, PM2.5 and PM1. Therefore the overall traffic contribution resulted in 18 μg m?3 (46%) in PM10, 14 μg m?3 (51%) in PM2.5 and 8 μg m?3 (48%) in PM1. In PMF2 this mass explained by road dust resuspension was redistributed among the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea salt contributions.  相似文献   

5.
Concentrations and chemical composition of the coarse particle fraction (PMc) were investigated at two urban sites in the city of Thessaloniki, Greece, through concurrent sampling of PM10 and PM2.5 during the warm and the cold months of the year. PMc levels at the urban-traffic site (UT) were among the highest found in literature worldwide exhibiting higher values in the cold period. PMc levels at the urban-background site (UB) were significantly lower exhibiting a reverse seasonal trend. Concentration levels of minerals and most trace metals were also higher at the UT site suggesting a stronger impact from traffic-related sources (road dust resuspension, brake and tire abrasion, road wear). According to the chemical mass closure obtained, minerals (oxides of Si, Al, Ca, Mg, Fe, Ti, and K) dominated the PMc profile, regardless of the site and the period, with organic matter and secondary inorganic aerosols (mainly nitrate) also contributing considerably to the PMc mass, particularly in the warm period. The influence of wind speed to dilution and/or resuspension of coarse particles was investigated. The source of origin of coarse particles was also investigated using surface wind data and atmospheric back-trajectory modeling. Finally, the contribution of resuspension to PMc levels was estimated for air quality management perspectives.  相似文献   

6.
Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter?<?10 μm (PM10) and their spatio-temporal distribution were determined for later use in a pediatric asthma panel study in an Alpine village. PM10 sources were identified by positive matrix factorization using chemical trace elements, elemental, and organic carbon from daily PM10 filters collected between November 2007 and June 2009 at seven locations within the village. Of the nine sources identified, four were directly road traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.  相似文献   

7.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

8.
The Minnesota Particulate Matter 2.5 (PM2.5) Source Apportionment Study was undertaken to explore the utility of PM2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance – Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49–71% of PM2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20–70% of the primary PM2.5 contribution, largely exceeding the proportion in the primary PM2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources – including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM2.5 episodes were explained by both local and regional pollution events.  相似文献   

9.
This study integrated estimated oxidation ratio of sulfur (SOR) and oxidation ratio of nitrogen (NOR) with source-receptor modeling results to identify the effects of terrain and monsoons on ambient aerosols in an urban area (north basin) and a rural area (south basin) of the Taichung Basin. The estimated results indicate that the conversion of sulfur mainly occurs in fine particles (PM2.5), whereas the conversion of nitrogen occurs in approximately equal quantities of PM2.5 and coarse particles (PM2.510). The results show a direct relationship for PM2.5 between the modeling results with SOR and NOR. The high PM2.5 SOR, NOR, and secondary aerosol values all occurred in the upwind area during both monsoons; this shows that the photochemical reaction and the terrain effect on the pollutant transmission were significant in the basin. Additionally, the urban heat island effect on the urban area and the valley effect on the rural area were significant. The results show that secondary aerosol in PM2.5–10 contributed approximately 10 % during both monsoons, and the difference in the contribution from secondary aerosol between both areas was small. Vehicle exhaust emissions and wind-borne dust were two crucial PM2.5–10 contributors during both monsoons; their average contributions in both areas were higher than 34 and 32 %, respectively.  相似文献   

10.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

11.
Atmospheric particles are a major problem that could lead to harmful effects on human health, especially in densely populated urban areas. Chiayi is a typical city with very high population and traffic density, as well as being located at the downwind side of several pollution sources. Multiple contributors for PM2.5 (particulate matter with an aerodynamic diameter ≥2.5 μm) and ultrafine particles cause complicated air quality problems. This study focused on the inhibition of local emission sources by restricting the idling vehicles around a school area and evaluating the changes in surrounding atmospheric PM conditions. Two stationary sites were monitored, including a background site on the upwind side of the school and a campus site inside the school, to monitor the exposure level, before and after the idling prohibition. In the base condition, the PM2.5 mass concentrations were found to increase 15% from the background, whereas the nitrate (NO3?) content had a significant increase at the campus site. The anthropogenic metal contents in PM2.5 were higher at the campus site than the background site. Mobile emissions were found to be the most likely contributor to the school hot spot area by chemical mass balance modeling (CMB8.2). On the other hand, the PM2.5 in the school campus fell to only 2% after idling vehicle control, when the mobile source contribution reduced from 42.8% to 36.7%. The mobile monitoring also showed significant reductions in atmospheric PM2.5, PM0.1, polycyclic aromatic hydrocarbons (PAHs), and black carbon (BC) levels by 16.5%, 33.3%, 48.0%, and 11.5%, respectively. Consequently, the restriction of local idling emission was proven to significantly reduce PM and harmful pollutants in the hot spots around the school environment.

Implications: The emission of idling vehicles strongly affects the levels of particles and relative pollutants in near-ground air around a school area. The PM2.5 mass concentration at a campus site increased from the background site by 15%, whereas NO3? and anthropogenic metals also significantly increased. Meanwhile, the PM2.5 contribution from mobile source in the campus increased 6.6% from the upwind site. An idling prohibition took place and showed impressive results. Reductions of PM2.5, ionic component, and non-natural metal contents were found after the idling prohibition. The mobile monitoring also pointed out a significant improvement with the spatial analysis of PM2.5, PM0.1, PAH, and black carbon concentrations. These findings are very useful to effectively improve the local air quality of a densely city during the rush hour.  相似文献   

12.
Abstract

The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30–35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2–4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4 2?, NO3 ?, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3 ?, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

13.
Ambient PM10 was sampled in six northern China cities (Urumqi, Yinchuan, Taiyuan, Anyang, Tianjin and Jinan) from December 1999 to July 2002, and analyzed for 16 chemical elements, two water-soluble ions, total carbon, and organic carbon. In addition, chemical source profiles consisting of the same particulate components were obtained from a number of naturally occurring geological sources (soil dust from exposed lands) and sources of atmospheric particulates resulting from human activities (resuspended dust, cement, coal combustion fly ash, vehicle exhaust, and secondary particles). Ambient and source data were used in a chemical mass balance (CMB) receptor model to determine the major source of PM10 in these six cities. Results of CMB modeling showed that the major source of ambient PM10 in all the cities was resuspended dust. Significant contributions from coal fly ash were also found in all six cities.  相似文献   

14.
A study on source apportionment of indoor dust and particulate matter (PM10) composition was conducted in a university building by using chemometrics. The objective of this study was to investigate the potential sources of selected heavy metals and ionic species in PM10 and indoor dust. PM10 samples were collected using a low-volume sampler (LVS) and indoor dust was collected using a soft brush. Inductively coupled plasma spectrometry (ICP-MS) was used to determine the concentration of heavy metals, while the concentration of cations and anions was determined by atomic absorption spectrometer (AAS) and ion chromatography (IC), respectively. The concentration of PM10 recorded in the building throughout the sampling period ranged from 20 ± 10 μgm?3 to 80 ± 33 μgm?3. The composition of heavy metals in PM10 and indoor dust were dominated by zinc (Zn), followed by lead (Pb), copper (Cu), and cadmium (Cd). Principle component analysis (PCA) and multiple linear regression (MLR) showed that the main sources of pollutants in PM10 came from indoor renovations (73.83%), vehicle emissions (16.38%), earth crust sources (9.68%), and other outdoor sources (0.11%). For indoor dust, the pollutant source was mainly earth crust. This study suggests that chemometrics can be used for forensic investigation to determine the possible sources of indoor contaminants within a public building.  相似文献   

15.
ABSTRACT

The spatial variability of different fractions of particulate matter (PM) was investigated in the city of Basel, Switzerland, based on measurements performed throughout 1997 with a mobile monitoring station at six sites and permanently recorded measurements from a fixed site. Additionally, PM10 measurements from the following year, which were concurrently recorded at two urban and two rural sites, were compared.

Generally, the spatial variability of PM4, PM10, and total suspended particulates (TSP) within this Swiss urban environment (area = 36 km2) was rather limited. With the exception of one site in a street canyon next to a traffic light, traffic density had only a weak tendency to increase the levels of PM. Mean PM10 concentration at six sites with different traffic densities was in the range of less than ±10% of the mean urban PM10 level. However, comparing the mean PM levels on workdays to that on weekends indicated that the impact of human activities, including traffic, on ambient PM levels may be considerable.

Differences in the daily PM10 concentrations between urban and more elevated rural sites were strongly influenced by the stability of the atmosphere. In summer, when no persistent surface inversions exist, differences between urban and rural sites were rather small. It can therefore be concluded that spatial variability of annual mean PM concentration between urban and rural sites in the Basel area may more likely be caused by varying altitude than by distance to the city center.  相似文献   

16.
The present study investigated the comprehensive chemical composition [organic carbon (OC), elemental carbon (EC), water-soluble inorganic ionic components (WSICs), and major & trace elements] of particulate matter (PM2.5) and scrutinized their emission sources for urban region of Delhi. The 135 PM2.5 samples were collected from January 2013 to December 2014 and analyzed for chemical constituents for source apportionment study. The average concentration of PM2.5 was recorded as 121.9 ± 93.2 μg m?3 (range 25.1–429.8 μg m?3), whereas the total concentration of trace elements (Na, Ca, Mg, Al, S, Cl, K, Cr, Si, Ti, As, Br, Pb, Fe, Zn, and Mn) was accounted for ~17% of PM2.5. Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon seasons. The chemical composition of the PM2.5 was reconstructed using IMPROVE equation, which was observed to be in good agreement with the gravimetric mass. Source apportionment of PM2.5 was carried out using the following three different receptor models: principal component analysis with absolute principal component scores (PCA/APCS), which identified five major sources; UNMIX which identified four major sources; and positive matrix factorization (PMF), which explored seven major sources. The applied models were able to identify the major sources contributing to the PM2.5 and re-confirmed that secondary aerosols (SAs), soil/road dust (SD), vehicular emissions (VEs), biomass burning (BB), fossil fuel combustion (FFC), and industrial emission (IE) were dominant contributors to PM2.5 in Delhi. The influences of local and regional sources were also explored using 5-day backward air mass trajectory analysis, cluster analysis, and potential source contribution function (PSCF). Cluster and PSCF results indicated that local as well as long-transported PM2.5 from the north-west India and Pakistan were mostly pertinent.  相似文献   

17.
The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM10) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2, and7.2–10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95–1.5-μm size range within the fine mode and at 7.3–10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49–0.95 and 7.3–10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1–12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM10 during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM10 was found in particles ≤0.95 μm in diameter which could induce adverse health effects to the population living in these areas.  相似文献   

18.
Abstract

Speciated fine particulate matter (PM2.5) data collected as part of the Speciation Trends Network at four sites in the Midwest (Detroit, MI; Cincinnati, OH; Indianapolis, IN; and Northbrook, IL) and as part of the Interagency Monitoring of Protected Visual Environments program at the rural Bondville, IL, site were analyzed to understand sources contributing to organic carbon (OC) and PM2.5 mass. Positive matrix factorization (PMF) was applied to available data collected from January 2002 through March 2005, and seven to nine factors were identified at each site. Common factors at all of the sites included mobile (gasoline)/secondary organic aerosols with high OC, diesel with a high elemental carbon/OC ratio (only at the urban sites), secondary sulfate, secondary nitrate, soil, and biomass burning. Identified industrial factors included copper smelting (North–brook, Indianapolis, and Bondville), steel/manufacturing with iron (Northbrook), industrial zinc (North–brook, Cincinnati, Indianapolis, and Detroit), metal plating with chromium and nickel (Detroit, Indianapolis, and Bondville), mixed industrial with copper and iron (Cincinnati), and limestone with calcium and iron (Bondville). PMF results, on average, accounted for 96% of the measured PM2.5 mass at each site; residuals were consistently within tolerance (±3), and goodness–of–fit (Q) was acceptable. Potential source contribution function analysis helped identify regional and local impacts of the identified source types. Secondary sulfate and soil factors showed regional characteristics at each site, whereas industrial sources typically appeared to be locally influenced. These regional factors contributed approximately one third of the total PM2.5 mass, on average, whereas local mobile and industrial sources contributed to the remaining mass. Mobile sources were a major contributor (55–76% at the urban sites) to OC mass, generally with at least twice as much mass from nondiesel sources as from diesel. Regional OC associated with secondary sulfate and soil was generally low.  相似文献   

19.
Proposals from the European Commission have raised the possibility that Member States may be able to subtract the concentrations of natural components of airborne particulate matter from measured concentrations when evaluating compliance with EU Limit Values. By applying the pragmatic mass closure model [Harrison et al., 2003. A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmospheric Environment 37, 4927–4933] to chemical composition data for PM10, it has been possible to estimate the concentrations of natural sea salt, strongly bound water and secondary organic carbon (which is assumed wholly biogenic) to the measured mass of PM10. Because of the difficulty in distinguishing between natural and anthropogenic crustal dusts, the contribution of natural windblown dust and soil has not been accounted for. When the natural components are estimated for two urban and one rural site in the UK, the long-term mean PM10 concentration is reduced by between 5.2 and 7.3 μg m−3. The number of exceedences of the 50 μg m−3 24-h limit value falls dramatically from 54 to 21 (from a total of 291 days) at an urban street canyon site, 7 to 3 (n=292 days) at an urban background site and from 8 to 0 (n=241 days) at a rural site when using gravimetric PM10 concentrations. The calculations have also been performed using PM10 concentrations measured by TEOM increased by a factor of 1.3 as recommended by the European Commission as an interim means of estimating gravimetric equivalency, and the number of exceedences of the 24-h limit value fell from 92 to 47 (from a total of 291 days) at the urban street canyon site, from 11 to 3 (n=292 days) at the urban background site and from 6 to 3 (n=241) at the rural site. Clearly, therefore, application of this proposed measure would make a very major difference to the likelihood of compliance or otherwise with the 24-h limit value for PM10.  相似文献   

20.
Aeolian river dust can seriously affect the air quality in central Taiwan. The main purpose of this study was to assess the concentration variations of PM10 and metals at different elementary schools during river dust episodes. River dust samples were taken from eight sites in the main bare soil areas of the Choshui River. PM10 aerosols from four elementary schools in Yulin County were collected by means of high-volume samplers. Fifteen elements (Fe, Al, Ca, Mg, Mn, Zn, Ti, Ni, V, Cr, As, Pb, Cu, Co, and Cd) in the river dust and PM10 were analyzed in this study. The coefficients of divergence (CDs) were obtained by comparing the metal compositions in PM10 aerosols at the four schools on the sampling days with the mean metal contents in the river soil samples as reference. The CD values showed that metal compositions in the aerosols at high-exposure sites during river dust episodes were similar to those compositions in the river dust. The concentrations of PM10 at the high-exposure schools during river dust episodes were much higher than those during non-river-dust episodes. This study also indicated that at the high-exposure sites, both the PM10 and metal concentrations were higher than at the low-exposure and control sites, not only during the river dust episodes, but also after the river dust episodes. The concentrations of toxic metals (Ni, Cr, As, and Cd) at the high-exposure sites were about 11.3 times higher during the river dust episodes (189 ng/m3) than during non-river-dust episodes (16.7 ng/m3) and about 8.9 times higher during the same periods at the control site (21.3 ng/m3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号