首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.  相似文献   

2.
Atmospheric concentrations of Na, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb are reported for 59 weekly air filter samples collected over the Kiel Bight. The contributions of sea salt, mineral dust and anthropogenic emissions to each of these elements were assumed to be represented by the concentrations of indicator elements, which were Na, Al and Zn, respectively. Based on this assumption a multiple regression analysis was applied to the concentration data. The results showed that atmospheric sea salt contributed significantly only to Sr and, of course, Na. Considerable portions of Al, K, Ca, Ti, Cr, Mn, Fe, Rb, Sr and Ba were derived from mineral dust. Anthropogenic sources were responsible for total V, Ni, Cu, Zn, As and Pb, and there was an anthropogenic component for most of the other elements.Moreover, the anthropogenic contribution was characterized by a nearly constant composition with respect to Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Rb, Sr, Ba and Pb, indicating that trace metals over the Kiel Bight are mainly derived from one source area. This conclusion was confirmed by correlating anthropogenic trace metal concentrations with the wind direction. A 40° wind sector directed to the south of the sampling site was identified as the major pathway for the transport of anthropogenic trace metals to the Kiel Bight.  相似文献   

3.
This paper describes an experimental study on the suppression of soot by metal additives during the combustion of polystyrene (PS). A two-dimensional flame generated by using a Wolfhard-Parker type diffusion flame burner was used to simulate practical combustion situations. The PS was continuously fed to the burner and, by controlling the feed rate, the combustion was maintained at a steady state. The additives tested were the salts of Li, Na, K, Mg, Ca, Sr, and Ba, and the combinations of the salts of K and Ca, Sr, or Ba. These additives were added to the flame in the form of small drops of their aqueous solutions generated by an ultrasonic atomizer. Since the flow rate of the carrier gas (air) is very small, this addition causes no noticeable disturbance to the flame. The effectiveness of the alkali metals follows the order of their ease of ionization, i.e., K > Na > Li, and that of the alkaline-earth metals: Ba > Sr > Ca > Mg. At low addition rates, the effectiveness increases with increasing addition rate but becomes unaffected at high addition rates and the maximum percentage of soot suppressed is approximately 50 percent. The combinations of the two metals (i.e., K and Ca, Sr, or Ba) are much more effective than each single metal at the same addition rates and the maximum percentage of soot suppressed reaches approximately 90 percent. It is proposed that the alkaline-earth metals catalyze the ionization of the alkali metals, thus significantly enhancing the effect on soot suppression.  相似文献   

4.
Total,dissolved, and bioavailable metals at Lake Texoma marinas   总被引:2,自引:0,他引:2  
Dissolved metals in water and total metals in sediments were measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg and K. Elevated Cu levels detected in lake water appeared to be associated with Cu based anti-fouling paint used on boats. Metal concentrations in sediment were much higher than in water. The relative order of the concentration in sediment was Ca > Al > Fe > K > Mg > Na. Elevated Cu level at specific locations appeared to be associated with local anthropogenic sources of boat repair activities. There were positive relationships between several metal elements in water and sediment. Metals in 16 sediments from lake marinas were extracted with a weak electrolyte solution [0.1 M Ca(NO3)2] to predict the bioavailability of metals. Among the five heavy metals studied (As, Cd, Cr, Cu and Zn), Cu was the most bioavailable in Lake Texoma marinas.  相似文献   

5.
Surface sediment from large and eutrophic Lake Chaohu was investigated to determine the occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls (PCBs) and heavy metals in one of the five biggest freshwater lakes in China. Total concentration of PCBs (Σ34PCBs) in Lake Chaohu was 672 pg g?1 dry weight (dw), with a range of 7 to 3999 pg g?1 dw, which was lower than other water bodies worldwide. The majority of heavy metals were detected at all sampling locations, except for Sr, B, and In. Concentrations of Al, Fe, Ca, Mn, Sr, Co, Zn, Cd, Pb, and Hg were similar to that reported for other lakes globally. Concentrations of K, Mg, Na, Li, Ga, and Ag were greater than the average, whereas those of Cr, Ni, and Cu were lower. Cluster analysis (CA) and positive matrix factorization (PMF) yielded accordant results for the source apportionment of PCBs. The technical PCBs and microbial degradation accounted for 34.2 % and 65.8 % of total PCBs using PMF, and PMF revealed that natural and anthropogenic sources of heavy metals accounted for 38.1 % and 61.8 %, respectively. CA indicated that some toxic heavy metals (e.g., Cd, In, Tl, and Hg) were associated with Ca–Na–Mg minerals rather than Fe–Mn minerals. The uncorrelated results between organic matter revealed by pyrolysis technology and heavy metals might be caused by the existence of competitive adsorption between organic matter and minerals. PCBs and heavy metals were coupling discharge without organochlorine pesticides (OCPs), but with polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). No sediment sample exceeded the toxic threshold for dioxin-like PCBs (dl-PCBs) set at 20 pg toxicity equivalency quantity (TEQ)?g?1, (max dl-PCBs, 10.9 pg TEQ g?1). However, concentrations of Ag, Cd, and Hg were at levels of environmental concern. The sediment in the drinking water source area (DWSA) was threatened by heavy metals from other areas, and some fundamental solutions were proposed to protect the DWSA.  相似文献   

6.

Introduction  

In this study, olive tree leaves, collected from 50 sampling sites throughout the Province of Aydın, Turkey, were used to estimate level of pollution by measuring Al, As, B, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn concentrations and calculating pollution factor (PF) values.  相似文献   

7.
To determine the extent of metal accumulation in some aquatic macrophytes from contaminated urban streams in southeast Queensland, plants were sampled from six sites, along with contiguous sediments. In all, 15 different species were collected, the most common genera being Typha (Cattails or Bulrushes) and Persicaria (Knotweeds). Before heavy metal analysis, plants were further separated into various morphological tissues, and five selected samples were separated into various physiological tissues. The cadmium, copper, lead and zinc content of the plants were analysed using flames AAS. In general, plant roots exhibited higher metal concentrations than the contiguous sediments. Of the metals of interest, only for zinc was there a relatively clear pattern of increasing accumulation in aquatic macrophytes with increasing sediment metal concentrations. Comparison between morphological tissues of the sampled plants found that roots consistently presented higher metal concentrations than either the stems or leaves, however unlike previous studies, this investigation revealed no consistent trend of stems accumulating more metals than the leaves. For Typha spp., metal concentrations followed the order of roots > rhizomes > leaves, while for Persicaria spp. the order was roots > leaves > stems. The submerged species Myriophyllum aquaticum accumulated the highest levels of metals overall (e.g. Zn 4300 micrograms g-1 dry weight and Cd 6.5 micrograms g-1), and the emergent macrophytes also exhibited relatively high metal contents in their roots. The leaves of the submerged and floating-leafed species collected contained relatively high quantities of the four metals of interest, compared with the leaves of emergent aquatic macrophytes. In the Typha rhizome and Persicaria stem samples analysed for internal variation in metal content, there was a pattern of increasing metal concentrations towards the external sections of the stem, both for subterranean stems (rhizomes) and above-substrate stems. For Persicaria stems, no clear pattern was observed for cadmium and lead, the two metals investigated that are not required by plants for survival.  相似文献   

8.
The use of mosses as environmental metal pollution indicators   总被引:13,自引:0,他引:13  
The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.  相似文献   

9.
Leaching of metals from sewage sludge can lead to their accumulation in topsoil and can also contaminate groundwater. Our objectives were to document the metal leachates and the size distribution of leached particles from sewage sludge and to identify possible correlations with physical factors. Results from monthly lysimeter sampling showed an initial release followed by decline for most metals. Cadmium, Ca, Sr, Li, Mn, Ni and Zn showed a "cyclic" behaviour. Filtration revealed that this "cyclicity" had no correlation to the size of released particles, but Al, Cr, Fe, Cu, Ag and Pb were clearly related to release of coarser particles most of the year. Total metal amounts leached during one year, relative to original sludge content, had the order Na>Ca=Mg>Mn>Sr>Zn>K>Li=Ni>Cd>Co>Rb>Ag>Cr>Ba=Cu>Ga>Al=Pb=Fe. There were no simple correlations between monthly measured leachate concentrations and precipitation, temperature or pH of precipitation. Occasional leachate sampling might give misleading values for metals with "cyclic" behaviour.  相似文献   

10.
Abstract

Analysis of inorganic and organic contaminants in foodstuffs aids in understanding the human exposure to these compounds via consumption. In this study, an edible mushroom species (Leccinum scabrum) and top soil samples were analysed for essential and toxic substances including phosphorus and inorganic elements over a period of three fruiting seasons. Analysis of silver (Ag), aluminium (Al), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), rubidium (Rb), strontium (Sr) and zinc (Zn) in mushrooms and topsoil were performed using inductively coupled plasma optical emission spectroscopy (ICP-OES) with ultrasonic cross flow nebulizer. Total mercury was determined by cold-vapour atomic absorption spectroscopy (CV-AAS). The results exhibited wide variation in concentrations of metals between soil and mushroom (cap and stipes) during three fruiting seasons. Positive bioconcentration factors (BFCs) indicate on bioaccumulation of several metals including, Cd, Cu, Hg, K, Mg, Na, P, Rb and Zn in caps and stipes of fruitbodies of this mushroom, while other metals such as Al, Ba, Ca, Co, Fe, Mn, Ni, Pb and Sr were not exhibiting significant positive BFCs. Over a period studied, the caps were characterised by different (p?<?0.05) concentrations of Al, Co, Cu, Hg, Mn, Ni, P, Pb and Sr. Contamination profiles, temporal fluctuations, BCFs should be taken into consideration when assessing the nutritional value of this mushroom.  相似文献   

11.
Anuran tadpoles are found in a variety of habitats, many of which are acidified or have high ambient concentrations of metals from anthropogenic sources. A few studies that have been conducted on metals in tadpoles demonstrate that they can contain high concentrations of some metals but have not demonstrated clear relationships between ambient conditions and metal concentrations. This study examines the influence of soil, water treatment, amphibian species, and body portion analyzed on metal concentration in tadpoles. In northern cricket frogs, gray treefrogs, and green frogs, concentrations of Al and Fe exceeded 10 000 microg.g(-1) and Mg and Mn exceeded 1000 microg g(-1). Body concentrations of Ba, Be, Fe, Mg, Mn, Ni, Pb, and Sr increased with soil concentrations. Acidification reduced body concentrations of Be and Sr, and pH correlated with Be, Mg, and Sr. Gray treefrogs had significantly lower concentrations of most metals compared to northern cricket frogs, possibly because of differences in microhabitats and soil ingestion. More than half of most metals was sequestered in the gut coil of green frog tadpoles, probably mixed with soil. Depending on bioavailablity, many of the metals in gut coils and whole bodies of these tadpoles could be potentially toxic to predators.  相似文献   

12.
Trace metal composition of winter snowpack, snow-melt filter residues and top-soil samples were determined along three transects through industrial towns in the Usa basin, North-East Russia: Inta, Usinsk and Vorkuta. Snow was analysed for Ag, Al, As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn using ICP-MS (Ca and K by F-AAS for Vorkuta only), pH and acidity/alkalinity. Filter residues were analysed for: Al, Ba, Ca, Cd, Cu, K, Mg, Mn, Ni, Pb, Sr and Zn using F-AAS and GF-AAS; top-soil samples were analysed for Ba, Cu, Mg, Mn, Na, Ni, Pb, Sr, Zn using F-AAS. Results indicate elevated concentrations of elements associated with alkaline combustion ash around the coal mining towns of Vorkuta and Inta. There is little evidence of deposition around the gas and oil town of Usinsk. Atmospheric deposition in the vicinity of Vorkuta, and to a lesser extent Inta, added significantly to the soil contaminant loading as a result of ash fallout. Acid deposition was associated with pristine areas whereas alkaline combustion ash near to emission sources more than compensated for the acidity caused by SO2.  相似文献   

13.
Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application.  相似文献   

14.
Liver and kidney tissue samples from four rodent species collected in the Geysers geothermal steamfield of northern California were analyzed for content of 28 elements. Element concentrations in samples from the developed region of the Geysers were compared with samples from undeveloped reference regions to determine the influence of geothermal power development on element content in small mammal tissues. Eight elements (B, Ca, Cu, Mg, Mn, P, Sr, Ti) were enriched in samples from the Geysers, 12 (Ag, Al, Co, Cr, Fe, K, Mo, Na, Ni, Pb, Si, Zn) were decreased within the Geysers, Ba and Li were inconclusive, and six (As, Be, Cd, Hg, Sn, V) were below the minimum analytical limits. The longest-lived species (Neotoma fuscipes) had the greatest occurrence of statistically significant differences in element content. Sites in grassland habitat produced more significant differences in element content than either chaparral or streamside habitats for samples from Peromyscus maniculatus. Peromyscus boylii and P. truei provided additional data, but no distinct advantages for element monitoring. The data indicate regional influences from geothermal power development on element levels in rodent tissues.  相似文献   

15.
Throughout the Kola region of Russia there has been a substantial increase of metal concentrations in water, which are related to local discharges from metallurgical and mining industry, transboundary transmissions as well as indirect leaching of elements by acid precipitation. This study presents data on the levels of Ni, Cu, Sr, Al, Zn, Co, Mn, Pb, Cd, Hg in the organs and tissues of fish, and evaluates relationships with water chemistry. Special attention is paid to fish pathologies, whose aetiology is related to the accumulation of metals and the associated changes of the elementary ratios within the organism. Ecotoxicological assessment of the copper nickel, strontium and acidification regimes also is considered in this article. In general we observed a large number of lakes that are heavily contaminated by Ni and Cu. Fish in these lakes contain high concentrations of Ni and Cu and display frequent pathologies, mostly associated with the kidneys. In lakes contaminated with Sr, there also are high Sr levels in fish and pathologies associated with skeletal tissues. Exposure to acidified water appears to increase the transport of metals (including Al, Ni and Cu) into fish and hence the toxic effects.  相似文献   

16.
Caps and stipes of 141 fruiting bodies of Parasol Mushroom (Macrolepiota procera) and surface layer of soils collected from 11 spatially distant and background (pristine) areas in Northern Poland were analyzed for Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr, and Zn by inductively coupled plasma optical emission spectroscopy and cold vapor atomic absorption spectroscopy. In terms of bioconcentration and bioexclusion concept, K, Ag, Cu, Rb, and P were highly bioconcentrated in caps, and their bioconcentration factor values varied for the 11 sites between 120 and 500—67–420, 70–220, 10–170, and 45–100, respectively. Cd, Zn, Mg, and Na showed bioconcentration factors (BCFs) between 3.3 and 36, 3.7–15, 0.92–6.3, and 1.4–44 while Al, Ba, Ca, Co, Cr, Mn, Ni, Pb, and Sr were excluded (BCF < 1). The Parasol Mushroom is a species harvested in the wild, and its caps are of unique taste and can contain a spectrum of essential and hazardous mineral compounds accumulated at elevated concentrations, even if collected at the background (pristine) areas. These elevated mineral concentrations of the caps are due to the efficient bioconcentration potential of the species (K, Ag, Cu, Rb, P, Cd, Zn, Mg, and Na) and abundance in the soil substrates (Al, Ca, Fe, Mn). The estimated intake rates of Cd, Hg, and Pb contained in Parasol Mushroom’s caps show a cause for concern associated with these metals resulting from the consumption of between 300- and 500-g caps daily, on a frequent basis in the mushrooming season.  相似文献   

17.
Concentrations of As, Al, Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Sb, Sn, Sr, Tl, V and Zn were analyzed by inductively coupled mass spectrometry (ICP-MS) in the intestinal helminth Pomphorhynchus laevis and its host Barbus barbus. The fish were caught in the Danube river downstream of the city of Budapest (Hungary). Ten out of twenty one elements analyzed were found at higher concentrations in the acanthocephalan than in different tissues (muscle, intestine, liver and kidney) of barbel. Considering the fish tissues, most of the elements were present at highest concentrations in liver, followed by kidney, intestine and muscle. Spearman correlation analyses indicate that there is competition for metals between the parasites and the host. The negative relationships between parasite number and metal levels in organs of the barbel support this hypothesis. The bioconcentration factors for Ag, As, Ba, Bi, Cu, Ga, Mn, Pb, Sr, Tl, and Zn showed that the parasites concentrated metals to a higher degree than the fish tissues. They accumulated the metals As, Cd, Cu, Fe, Ni, Pb, Sr and Zn even better than established bioindicators such as the mussel Dreissena polymorpha as revealed by data from the literature. The results presented here emphasize that acanthocephalans of fish are very useful as sentinels for metal pollution in aquatic ecosystems. Ratio of metal concentrations in the parasites and the host tissues provide additional information. Not including acanthocephalans in accumulation bioindication studies with fishes (as still customarily done) may lead to false results.  相似文献   

18.
ABSTRACT

This study was carried out on the accumulation and occurrence of Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Rb, Sr and Zn in the mushroom Amanita muscaria and forest topsoil from two lowland sites in the Tuchola Pinewoods in the north-central region and an upland site in the ?wietokrzyskie Mountains in the south-central region of Poland. Topsoil from the upland location showed Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, Na and Zn at significantly higher concentration levels (pseudo-total fraction and often also the labile or extractable fraction) than at both lowland locations, where topsoil was richer in Mg, and similar in Rb. Amanita muscaria from the upland region differed from individuals collected in the lowland sites by higher concentration levels of Cd, Cu, Hg and Mn in caps. This could be related to higher concentration levels of the metallic elements in topsoil in the upland region. On other side, A. muscaria from the upland site was poorer in Co and Fe in caps, and in Ca, Co, Fe and Sr in stipes. In spite of the differences in content of the geogenic metallic elements in topsoil between the lowland and upland locations, A. muscaria from both regions was able to regulate uptake and accumulation of Ag, Al, Ba, Ca, K, Mg, Na, Rb and Zn, which were at similar concentration levels in caps but not necessarily in stipes.  相似文献   

19.
Metals including Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in muscle tissue of 12 fish species by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and cold vapour-atomic absorption spectroscopy (CV-AAS). Fish were collected from Vistula River at lower course and Dead Vistula River channel in south of Baltic Sea in Poland. The fish species examined include Round Goby (Neogobius melanostomus), Crucian Carp (Carassius carassius), Bull-rout (Myoxocephalus scorpius), Tench (Tinca tinca), Bream (Abramis brama), Burbot (Lota lot), Perch (Perca perca), Roach (Rutilus rutilus), Silver Carp (Hypophthalmichthys molitrix), Pikeperch (Stizostediun lucioperca), Brown salmon (Salmo trutta m. Trutta) and Eel (Anguilla anguilla). The median values of metal concentrations in fresh muscle tissue of 11 fish species varied as follows: Al < 0.5-60; Ba < 0.05-0.31; Ca 120-1800; Cd < 0.05-0.096; Co < 0.10; Cr < 0.10-0.50; Cu < 0.15-0.77; Fe 1.5-21; Hg 0.0058-0.65; K 1800-4200; Mg 130-560; Mn 0.12-0.59; Na 350-840; Ni < 0.2-0.31; Pb < 0.75; Sr 0.079-2.9; Zn 3.3-23 μg/g fresh weight. The Target Hazard Quotient (THQ) values calculated in this study for Cd and Hg from muscles of fish species collected from Vistula River were low in the range of 0.4 for Hg and 0.8 for Cd.  相似文献   

20.
Mature specimens of Parasol Mushroom were collected annually in the outskirts of the Siemiany (2000-2003) and Rafa (2001-2003) sites in the northern part of Poland to examine temporal variations and similarities in the composition of 20 chemical elements. Analysis was done under the same condition and using well-validated analytical methods. Elements were determined by inductively coupled plasma-atomic emission spectroscopy and cold vapour-atomic absorption spectroscopy (Hg). The ranges of Ag, Al, Ba, Ca, Cd, Co, Cu, Cr, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn concentrations in the caps of fruiting bodies were similar (p > 0.05; Mann-Whitney U test) for both geographically distant sites, and these specimens from Rafa were more contaminated with Pb (p < 0.05; Mann-Whitney U test). The annual collections of caps in the Siemiany site varied in Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, Na, Rb and Sr and contents (0.05 < p < 0.001), while they were similar in Cr, K, Mg, Mn, Ni, P, Pb and Zn (p > 0.05; Mann-Whitney U test). The annual collections of specimens from the Rafa site varied in contents of Ag, Al, Ba, Ca, Fe, Hg, K, Mg, Mn, P, Rb and Zn (p > 0.05), while they were similar in Cd, Co, Cr, Cu, Na, Ni, Pb and Sr (p < 0.05). The results of this study imply that metallic elements content of Parasol Mushroom collected at the same undisrupted sites, and hence keeping the same geochemical condition for mushroom development and fructification (the same stands and probably the same mycelia), can fluctuate over the years or the life-span of mycelium. Hence, when assessing the nutritional value of essential metallic elements and status of non-essential or toxic metallic elements in Parasol's Mushroom caps (and probably also of other mushrooms species) to man, the possible fluctuation in contents over time have to be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号