首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentration levels of 21 elements were analyzed by instrumental neutron activation analysis (Rb, Cs, Ca, Sr, Ba, Sc, Cr, Fe, Co, Ni, Zn, Se, As, Sb, Th, U, Br, Hf, Ta, Zr, and Ag) in seven different seaweed species (Codium cuneatum, Sargassum sinicola, Padina durvillaei, Laurencia johnstonii, L. papillosa, Gracilaria pachidermatica and Hypnea pannosa), collected in a shallow coastal zone from Bahia de Loreto, Baja California Sur, Mexico. Measured concentrations in algal tissue spanned almost eight orders of magnitude (from 2.0 x 10(-3) microg g(-1) for Hf to 1.2 x 10(5) microg g(-1) for Ca). Ca was consistently the most abundant element in all analyzed seaweeds, followed by Fe and Sr. Brown algae showed a tendency to incorporate higher concentrations of elements than red and green algae. Additionally, there were significant linear correlations (P < 0.05 to P < 0.001) between a total of 76 different pairs of elements, some of them (e.g. Rb-Ni, Rb-Ag, Sc Cr, Sc-Fe, Sc Ni, Sc Hf, Cr Fe, Fe Ni, Fe-Hf and Ni-Th) highly correlated (r2 > 0.900). A significant correlation (r2 = 0.701, n = 18, P < 0.001) exists between our measurements in the tissue of algae and their corresponding average elemental concentrations in oceanic water from the North Pacific Ocean. Hence, overall elemental abundance in algal tissue apparently is controlled by the elemental abundance in oceanic water, whereas metabolic processes as well as environmental factors relevant to each region modify the final concentration of a given element in the body of a macroalgae.  相似文献   

2.
In the last decade, various molecular methods (e.g., fluorescent hybridization assay, sandwich hybridization assay, automatized biosensor detection, real-time PCR assay) have been developed and implemented for accurate and specific identification and estimation of marine toxic microalgal species. This review focuses on the recent quantitative real-time PCR (qrt-PCR) technology developed for the control and monitoring of the most important taxonomic phytoplankton groups producing biotoxins with relevant negative impact on human health, the marine environment, and related economic activities. The high specificity and sensitivity of the qrt-PCR methods determined by the adequate choice of the genomic target gene, nucleic acid purification protocol, quantification through the standard curve, and type of chemical detection method make them highly efficient and therefore applicable to harmful algal bloom phenomena. Recent development of qrt-PCR-based assays using the target gene of toxins, such as saxitoxin compounds, has allowed more precise quantification of toxigenic species (i.e., Alexandrium catenella) abundance. These studies focus only on toxin-producing species in the marine environment. Therefore, qrt-PCR technology seems to offer the advantages of understanding the ecology of harmful algal bloom species and facilitating the management of their outbreaks.  相似文献   

3.
4.
On three occasions between 1998 and 2000, freshwater mussels were collected by divers in Lake Memphremagog during the spring and transplanted to various locations in the St-Fran?ois River (Quebec, Canada). Mussel growth was monitored by comparing total weight and length at the beginning and end of the exposure period. In 1998, mussels were caged for 60 days at 10 stations, including locations receiving treated effluents from three pulp and paper mills. Overall, there was an apparent trend of increased mussel growth from upstream to downstream along the river. However, mussels caged downstream from the effluent discharge of a bleached kraft pulp and paper mill grew more slowly than those caged immediately upstream in the river. In 1999 and 2000, we further investigated the situation in the vicinity of this bleached kraft mill. The measurements again indicated that growth of mussels in the effluent plume from this mill was reduced in comparison to sites upstream. Overall, in terms of growth, the caged mussels responded both positively and negatively to different environmental conditions. Compared with other monitoring approaches used at these sites during the same period, the caged mussel experiment results were consistent with the trends observed with the benthic invertebrate survey but not with the trends observed for fish.  相似文献   

5.
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1).  相似文献   

6.
Environmental Science and Pollution Research - Regulatory assessment of the effects of chemicals requires the availability of validated tests representing different environments and organisms. In...  相似文献   

7.
Zhang G  Chen L  Chen J  Ren Z  Wang Z  Chon TS 《Chemosphere》2012,87(7):734-741
The Stepwise Behavioral Response Model (SBRM), which is a conceptual model, postulated that an organism displays a time-dependent sequence of compensatory Stepwise Behavioral Response (SBR) during exposure to pollutants above their respective thresholds of resistance. In order to prove the model, in this study, the behavioral responses (BRs) of medaka (Oryzias latipes) in the exposure of Arprocarb (A), Carbofuran (C) and Methomyl (M) were analyzed in an online monitoring system (OMS). The Self-Organizing Map (SOM) was utilized for patterning the obtained behavioral data in 0.1 TU (Toxic Unit), 1 TU, 2 TU, 5 TU, 10 TU and 20 TU treatments with control. Some differences among different Carbamate Pesticides (CPs) were observed in different concentrations and the profiles of behavior strength (BS) on SOM were variable depending upon levels of concentration. The time of the first significant decrease of BS (SD-BS) was in inverse ratio to the CP concentrations. Movement behavior showed by medaka mainly included No effect, Stimulation, Acclimation, Adjustment (Readjustment) and Toxic effect, which proved SBRM as a time-dependence model based on the time series BS data. Meanwhile, it was found that SBRM showed evident stress-dependence. Therefore, it was concluded that medaka SBR was both stress-dependent and time-dependent, which supported and developed SBRM, and data mining by SOM could be efficiently used to illustrate the behavioral processes and to monitor toxic chemicals in the environment.  相似文献   

8.
Fan M  Thongsri T  Axe L  Tyson TA 《Chemosphere》2005,60(1):111-125
A probabilistic approach was applied in an ecological risk assessment (ERA) to characterize risk and address uncertainty employing Monte Carlo simulations for assessing parameter and risk probabilistic distributions. This simulation tool (ERA) includes a Window's based interface, an interactive and modifiable database management system (DBMS) that addresses a food web at trophic levels, and a comprehensive evaluation of exposure pathways. To illustrate this model, ecological risks from depleted uranium (DU) exposure at the US Army Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) were assessed and characterized. Probabilistic distributions showed that at YPG, a reduction in plant root weight is considered likely to occur (98% likelihood) from exposure to DU; for most terrestrial animals, likelihood for adverse reproduction effects ranges from 0.1% to 44%. However, for the lesser long-nosed bat, the effects are expected to occur (>99% likelihood) through the reduction in size and weight of offspring. Based on available DU data for the firing range at APG, DU uptake will not likely affect survival of aquatic plants and animals (<0.1% likelihood). Based on field and laboratory studies conducted at APG and YPG on pocket mice, kangaroo rat, white-throated woodrat, deer, and milfoil, body burden concentrations observed fall into the distributions simulated at both sites.  相似文献   

9.
Interspecific comparison in metals and PAHs profile in three lichen species, Flavoparmelia caperata, Phaeophyscia hispidula and Pyxine sorediata, were studied in different altitudinal gradients of the Western Himalayas. The species collected from 14 sites, enroute from Dehradun to Morinda (243 Km) including the trekking route 42 Km from Taluka to Morinda having an altitudinal gradient between 850–3,750 m, were analysed for their metals and PAHs. The species showed similar metal as well as PAHs profile under similar altitudinal gradients in the sequence of F. caperata > P. hispidula > P. sorediata. The difference in pollutant concentrations within each lichen species may be related to intrinsic attributes of the species, such as thallus morphology and the presence of lichen substances which are responsible for the sensitivity and accumulation potential of a particular species. Novelty of the present study lies on the fact that all the species show a similar efficiency of reflecting the environmental condition of the area, albeit the coefficient values of individual species for individual pollutant obtained by three-factor ANOVA revealed that the bioaccumulation affinity of F. caperata is significantly higher than P. hispidula and P. sorediata. For individual metals, F. caperata has a higher affinity for Al, Cr, Fe, Pb and Zn while P. hispidula has a significant positive affinity for Fe and Pb. PCA analysis of sites with respect to pollutant revealed the segregation of sites based on source and distance. Combining the bioaccumulation potential parameters along with geostatistical (GIS) techniques establishes that F. caperata species is a better accumulator of metals and PAHs in comparison to P. hispidula and P. sorediata in the temperate regions of the Himalaya.  相似文献   

10.
Environmental Science and Pollution Research - Aquaculture is one of the fastest-growing industries in the world, and its prominent role has been proven in supplying food for the growing world...  相似文献   

11.
Electron paramagnetic resonance spectroscopy is used to monitor the bioavailability of a nitroxide spin probe, 4-hydroxy-Tempo or Tempol, in Ca-hectorite suspensions and pastes, to bacteria capable of degrading this probe co-metabolically. In nutrient solutions with an initial probe concentration of 1.2 mM and in the absence of hectorite, bacteria are able to denature Tempol and eliminate its paramagnetic signal within 48 h. In the presence of hectorite and after flocculation, the effect of bacteria is significantly delayed, but almost complete denaturation still occurs, after roughly 120 h. When hectorite is added but the bacterial/clay suspension is not centrifuged, Tempol denaturation levels off after about 24 h and reaches a plateau with approximately 45% of Tempol remaining. This plateau does not constitute evidence of limited bioavailability, as is widely assumed, since subsequent addition of nutrients causes the denaturation reaction to proceed to a second plateau, with merely 10% of Tempol remaining.  相似文献   

12.
Polychlorinated biphenyls (PCBs) and Polybrominated Diphenyls Ethers (PBDEs) are two highly lipophilic classes of persistent organic pollutants able to resist degradation and with the ability to bioaccumulate through the food chain. In Brazil, there are still few studies on PCBs and PBDEs in aquatic organisms. In this study, we determined the levels of PBDEs and PCBs in three different fish species from the Ilha Grande Bay, located in the southern state of Rio de Janeiro, Brazil. PBDEs levels were very low, with values below the limit of quantification. PCBs concentrations ranged from 2.29 to 27.60 ng g?1 ww in muscle and from 3.41 to 34.22 ng g?1 ww in liver of the three investigated fish species. Significant positive correlations were established between PCBs concentration and fish biometric variables in mullet (length and lipid content) and a statistically significant change between seasons in croaker was observed.  相似文献   

13.
Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an important requirement of monitoring programmes. Monitoring of toxic algae by means of traditional methods, i.e., light microscopy, can be time consuming when many samples have to be routinely analysed. Reliable species identification requires expensive equipment and trained personnel to carry out the analyses. However, all techniques for the monitoring of harmful algae usually require transportation of samples to specialised laboratories. In many monitoring laboratories, results are usually obtained within five working days after receiving the sample and therefore preventative measures are not always possible. Molecular technologies are rapidly improving the detection of phytoplankton and their toxins and the speed at which the results can be obtained. Assays are based on the discrimination of the genetic differences of the different species and species-specific probes can be designed. Such probes have been adapted to a microarray or phylochip format and assessed in several EU monitoring sites. Microarray results are presented for 1 year of field samples validated with cell counts from concentrated samples taken during toxic events from the weekly sampling of the Galician Monitoring Programme done by INTECMAR. The Galician monitoring laboratory does their own counting and their results are posted on their web site within 24 h. There was good correlation between cells present and microarray signals. In the few cases of false negatives, these can be attributed to poor RNA extraction of the target species, viz. Prorocentrum or Dinophysis. Where potential false positives were encountered, the smaller volume taken for cell counts as compared to the upto 300 times more volume taken for RNA extraction for the microarray is likely the cause for these differences, making the microarray more sensitive. The microarray was able to provide better species resolution in Alexandrium and Pseudo-nitzschia. In all cases, the toxins recovered by the toxin array were matched by target species in the array or in the cell counts.  相似文献   

14.
The threshold values of indicator species and ratios delineating the transition between NOx and VOC sensitivity of ozone formation are assumed to be universal by various investigators. However, our previous studies suggested that threshold values might vary according to the locations and conditions. In this study, threshold values derived from various model simulations at two different locations (the area of Switzerland by UAM Model and San Joaquin Valley of Central California by SAQM Model) are examined using a new approach for defining NOx and VOC sensitive regimes. Possible definitions for the distinction of NOx and VOC sensitive ozone production regimes are given. The dependence of the threshold values for indicators and indicator ratios such as NOy, O3/NOz, HCHO/NOy, and H2O2/HNO3 on the definition of NOx and VOC sensitivity is discussed. Then the variations of threshold values under low emission conditions and in two different days are examined in both areas to check whether the models respond consistently to changes in environmental conditions. In both cases, threshold values are shifted similarly when emissions are reduced. Changes in the wind fields and aging of the photochemical oxidants seem to cause the day-to-day variation of the threshold values. O3/NOz and HCHO/NOy indicators are predicted to be unsatisfactory to separate the NOx and VOC sensitive regimes. Although NOy and H2O2/HNO3 provide a good separation of the two regimes, threshold values are affected by changes in the environmental conditions studied in this work.  相似文献   

15.
The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the macroinvertebrate community in the system.  相似文献   

16.
17.
The attack rates, brood survival, and emergence rates of the western pine beetle, Dendroctonus brevicomis LeConte, and incidence of entomophagus associates, were compared between photochemical oxidant damaged, and apparently healthy, ponderosa pine trees, Pinus ponderosa Dougl. ex Laws in the San Bernardino Forest in Southern California. The results from this study suggest that oxidant-damaged trees attacked by western pine beetle produced about the same total brood with lower initial attacks when compared with healthier trees, whereas the numbers of predators and parasitoids were higher in the healthier trees. This higher productivity trend for western pine beetle is most evident in trees attacked by the first beetle generation. Trees attacked by the second generation, both damaged and healthy, produced much less western pine beetle brood than generation 1 attacked trees, regardless of oxidant damage. The implication of these results is that, in stands with a higher proportion of oxidant damaged trees, a given population of western pine beetle could kill more trees, and increase at a greater rate, than in a stand with a lower proportion of damaged trees.  相似文献   

18.
The first projects relating to levels of Cd and Hg on marine biota and sediments from Terra Nova Bay (Ross Sea--Antarctica) and their bioaccumulation and biomagnification in this trophic web have been carried out by research programmes pertaining to the Italian Antarctic Research Program (PNRA) since 1989. Making use of this data, and checking the same metals after 10 years thanks to the samples stored in the BCAA, we have looked for the levels of Cd and Hg in a coastal marine ecosystem of Terra Nova Bay, and have proposed using some organisms to monitor the levels of these two heavy metals in this environment where the Italian Base is located, using the data determinate in this work as background levels. In our work, the amount of Hg and Cd concentrations have been determined in biota from the inner shelf of Terra Nova Bay (Adamussium colbecki, Laternula elliptica, Odontaster validus, Sterechinus neumayeri, Trematomus bernacchii, Iridaea cordata, Phyllophora antarctica, Parborlasia corrugatus), and in two different size fractions of sieved marine sediments (<2000 microm and <63 microm). To widen the distribution of Cd and Hg in this ecosystem we have also investigated the fraction of these metals bound to the labile phase of the marine sediments, and their presence in the particulate matter found in pack-ice cores, recent snow, water column and sea microlayer.  相似文献   

19.
The use of Mya arenaria as a new sensitive biomonitor of butyltins pollution in the oceanic system was investigated. Field survey indicated that much higher levels of butyltin compounds were found in M. arenaria compared with the other species investigated. Using Mytilus edulis as a control organism, a 28 days exposure of tributyltin chloride (TBT) to M. arenaria for accumulation and subsequent 28 days breeding in clean seawater for elimination were conducted under laboratory conditions in order to confirm its high accumulation ability and characterize its kinetic behavior to TBT. Bioconcentration factor (BCF) of M. arenaria ranged from 15,538 to 91,800 after 28 days exposure. The rapid uptake and low rate to eliminate TBT of M. arenaria displayed first-order kinetics. M. arenaria shows potential as a new bioindicator to monitor TBT pollution in marine environment.  相似文献   

20.
Maki T  Hirota W  Motojima H  Hasegawa H  Rahman MA 《Chemosphere》2011,83(11):1486-1492
Aquatic arsenic cycles mainly depend on microbial activities that change the arsenic chemical forms and influence human health and organism activities. The microbial aggregates degrading organic matter are significantly related to the turnover between inorganic arsenic and organoarsenic compounds. We investigated the effects of microbial aggregates on organoarsenic mineralization in Lake Kahokugata using lake water samples spiked with dimethylarsinic acid (DMA). The lake water samples converted 1 μmol L−1 of DMA to inorganic arsenic for 28 d only under anaerobic and dark conditions in the presence of microbial activities. During the DMA mineralization process, organic aggregates >5.0 μm with bacterial colonization increased the densities. When the organic aggregates >5.0 μm were eliminated from the lake water samples using filters, the degradation activities were reduced. DMA in the lake water would be mineralized by the microbial aggregates under anaerobic and dark conditions. Moreover, DMA amendment enhanced the degradation activities in the lake water samples, which mineralized 50 μmol L−1 of DMA. The DMA-amended aggregates >5.0 μm completely degraded 1 μmol L−1 of DMA with a shorter incubation time of 7 d. The supplement of KNO3 and NaHCO3 to lake water samples also shortened the DMA-degradation period. Presumably, the bacterial aggregates involved in the chemical heterotrophic process would contribute to the DMA-biodegradation process in Lake Kahokugata, which is induced by the DMA amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号