首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同粒径泥沙理化特性对磷吸附过程的影响   总被引:1,自引:0,他引:1  
以北京大兴南海子湖表层沉积物为研究对象,测试分析了0.147~0.246 mm(细砂)、0.074~0.147 mm(极细砂)、0.0385~0.0740 mm(粉粒)和<0.0385 mm(粉粒粘粒混合物)4种粒径泥沙对磷的吸附行为,并采用相关分析及逐步回归分析探讨不同粒径沉积物中有机质(OM)、Fe、Al、Ca、Mn和TP含量对磷吸附过程的影响。结果表明,二级动力学方程和Langmuir模型能较好地描述南海子不同粒径泥沙的吸附动力学及等温吸附过程(R2>0.90)。粒径对单位质量泥沙吸附磷量具有明显影响,粉粒粘粒混合物>粉粒>细砂>极细砂。总体上,泥沙有机质(OM)、TP、Fe、Al、Ca和Mn含量随粒径的减小而增大,且粘粒对其影响较大。不同粒径泥沙(OM)、Fe、Al、Ca和Mn含量之间存在极显著正相关关系(P<0.01),且均对单位质量泥沙最大吸附量(Xm)和饱和吸附量(Cse)具有正效应,其中Al含量对该参数的影响更为显著。这说明泥沙对磷的吸附行为可能受到粒径和化学成分的共同影响。  相似文献   

2.
A myriad of physical, chemical, and biological processes controls the fate of organic contaminants in soils. The knowledge of bioavailability of a contaminant in soil can be useful to conduct environmental risk assessment. We conducted batch equilibrium experiments to investigate the sorption of cyromazine (CA) and its metabolite melamine (MA) onto five typical soils of China belonging to suborders Ali-Perudic Ferrosols, Udic Argosols, Gleyic-Stagnic Anthrosols, Ustic Cambosols, and Udic Isohumosols. Results showed that sorption of CA and MA onto soils was linear, as indicated by the Freundlich and Langmuir models. Different sorption behaviors of CA and MA were observed on the five agricultural soils, with lgK f values (Freundlich model) of 1.6505–2.6557 and 1.632–2.549, respectively. Moreover, the K f values for CA and MA were positively correlated with soil organic matter (r?=?0.989, r?=?0.976) and significantly negatively correlated with pH (r?=??0.938, r?=??0.964). The free energy of sorption of CA and MA ranged from ?20.8 to ?23.0 kJ mol?1 and ?20.8 to ?22.8 kJ mol?1, respectively, suggesting that the sorption of CA and MA onto the soils is primarily a physical process.  相似文献   

3.
Pterocarya stenoptera is a native deciduous tree species and a candidate for reforestation in the riparian zones of the Three Gorges Reservoir Region of Yangtze River in China. Water treatments of continuous flooding (CF) and periodic flooding–drought (PF) were applied to examine the growth dynamics of 4-month-old P. stenoptera seedlings and its effects on soil chemical properties. Results showed that P. stenoptera seedlings in both CF and PF significantly decreased leaf biomass accumulation and the height and diameter growth as compared to that in control (CK; treatment with well-watered, well-drained soil), respectively. There was no significant difference in stem biomass among the three groups, but root biomass in PF showed severe reduction compared to that in both CK and CF. Total biomass in PF was significantly decreased compared to that in CK, but comparable to that in CF. Furthermore, no significant difference was found between CF and CK in total biomass. Water treatments in the unplanted soil pots significantly influenced soil pH, soil organic matter (OM), total nitrogen (TN), and alkali hydrolysable nitrogen (AN) contents, in contrast to no significant effects in total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) contents. In P. stenoptera soils, there were significant effects by water treatment, time, and treatment × time in the eight tested soil chemical properties, except treatment in TK and time effect in OM content. Compared to unplanted soils, the growth of P. stenoptera seedlings significantly increased soil pH value and OM, TN, TP, and TK contents, while decreasing AN, AP, and AK contents in CK group, augmented the mean value of each of the tested soil chemical properties with an exception of AK content in CF group, and increased soil pH value and TN, AN, TP, and AP contents with no significant differences in OM, TK, and AK contents in PF group. Given the fact that TN and TP contents significantly increased in P. stenoptera soils as compared to those in unplanted soils, growth of P. stenoptera seedlings should be a successful candidate for restoration within the highly dynamic hydrologic zone of the riparian zones of the Three Gorges Reservoir Region.  相似文献   

4.
An empirical emission model based on experimental data was proposed. The total suspended particulates (TSP) emission model obtained by using stepwise multiple-regression analysis was significant (p<0.001); moreover, the relatively high value of R-squared (R2=0.85), which indicated that four parameters included in the model (air temperature, soil silt content, soil moisture content, and wind speed) accounted for the particulate emissions from a sandbank. The results of the multiple-regression analysis demonstrated that the TSP emission factors increased with increase in air temperature, soil silt content and wind speed, but were inversely affected by the soil moisture content. The model equation verified the experimental results and proved itself to be an important tool in predicting the dust emissions from a sandbank under strong wind conditions.  相似文献   

5.
The concentration and loading distribution of trace metals (Cu, Zn, Pb, Co, Ni, Cr, and Mn) and major elements (Al, Ca, Fe, and Mg) in different particle size fractions (2000-280, 280-100, 100-50, 50-10, 10-2, and <2 μm) of surface soils from highly urbanized areas in Hong Kong were studied. The enrichment of Pb, Cu, and Zn in the urban soils was strongly influenced by anthropogenic activities, and Pb accumulated in fine particles was mainly derived from past vehicular emissions as shown by Pb isotopic signatures. Trace metals primarily accumulated in clay, fine silt, and very fine sand fractions, and might pose potential health risks via the inhalation of resuspended soil particles in the air (PM10 or PM2.5), and ingestion of adhered soils through the hand-to-mouth pathway. The mobility, bioavailability, and human bioaccessibility of Pb and Zn in bulk soils correlated significantly with metal concentrations in fine silt and/or very fine sand fractions.  相似文献   

6.
Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70–80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40–50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.  相似文献   

7.
The streaming potential has been wildly used in charged parallel plates, capillaries, and porous media. However, there have been few studies involving the ζ potential of clay soils based on streaming potential measurements. A laboratory apparatus was developed in this study to measure the streaming potential (ΔE) of bulk clay soils’ coupling coefficient (C) and cell resistance (R) of saturated granular soil samples. Excellent linearity of ΔE versus liquid pressure (ΔP) ensured the validity of measurements. The obtained parameters of C and R can be used to calculate the ζ potential of bulk soils. The results indicated that the ζ potentials measured by streaming potential method were significantly correlated with the ζ potentials of soil colloids determined by electrophoresis (r 2?=?0.960**). Therefore, the streaming potential method can be used to study the ζ potentials of bulk clay soils. The absolute values of the ζ potentials of four soils followed the order: Ultisol from Jiangxi?>?Ultisol from Anhui?>?Oxisol from Guangdong?>?Oxisol from Hainan, and this was consistent with the cation exchange capacities of these soils. The type and concentration of electrolytes affected soil ζ potentials. The ζ potential became less negative with increased electrolyte concentration. The ζ potentials were more negative in monovalent than in divalent cationic electrolyte solutions because more divalent cations were distributed in the shear plane of the diffuse layer as counter-cations on the soil surfaces than monovalent cations at the same electrolyte concentration.  相似文献   

8.
The stability of TiO2 nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO2 could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO2 contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO2 (18.8-83.0%) readily passed through the soils columns, while TiO2 was significantly retained by soils with higher clay contents and salinity. TiO2 aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO2 in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO2 nanoparticles to deep soil layers.  相似文献   

9.

Purpose

This study evaluates manure and chemical fertilizer effects on micronutrient (Fe, Mn, Cu, and Zn) content and availability in crops.

Methods

Seven treatments were selected, including three conventional fertilization treatments (NP, horse manure (M), and NP plus M (NPM)), three corresponding double rate fertilization (N2P2, M2, and N2P2M2), and a CK. Soil samples were collected and separated into four aggregates by wet-sieving in September 2009. Corn samples were collected and analyzed simultaneously.

Results

Treatment N2P2 increased DTPA extractable Fe, Mn, and Cu in soil by 732%, 388%, and 42%, whereas M2 decreased the corresponding values by 26%, 22%, and 10%, respectively, compared to CK. DTPA extractable Zn in soil and Zn in corn grain were higher in the M and M2 treatments than in the other treatments, and DTPA Zn was significantly correlated with soil organic carbon (SOC) in large macroaggregate, microaggregate, and silt + clay fractions. The Mn concentrations in corn stalks and grain were significantly correlated with DTPA extractable Mn in bulk soil and microaggregates, and Zn in stalks were significantly correlated with DTPA Zn in bulk soil, microaggregates, and large macroaggregates.

Conclusions

Long-term application of horse manure could increase soil Zn availability and uptake by corn, possibly due to its activation by SOC. In contrast, chemical fertilizer application increased DTPA extractable Fe, Mn, and Cu in soil by reducing soil pH. Our results also suggest that Mn uptake by corn originated mainly in microaggregates, whereas Zn in crops was primarily sourced from large macroaggregates and microaggregates.  相似文献   

10.
Shan J  Xu J  Zhou W  Ji L  Cui Y  Guo H  Ji R 《Chemosphere》2011,82(2):156-162
Earthworms are the dominant soil biomass of many terrestrial ecosystems and markedly influence the physico-chemical and biological properties of soil; however, little is known about the effects of earthworm activities on the environmental behavior of micropollutants in soil. We studied the sorption and desorption of 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol on geophagous earthworm (anecic Metaphire guillelmi) casts of various aging times and on the parent soil. The casts were characteristic of lower pH and higher content of fine particles (silt and clay) than the parent soil. The sorption of the chlorophenols on the soil and casts were well fitted to linear isotherms, with sorption capacity in the order of pentachlorophenol > 2,4-dichlorophenol > 2,4,6-trichlorophenol. The sorption on the cast with different aging time was quite similar and was higher than on the parent soil. The sorption on the soil did not change between pH 7.07 of the soil and pH 6.76 of the casts. The desorption hysteresis of the chlorophenols on the soil and casts was compound specific and 2,4,6-trichlorophenol showed the highest hysteresis. The higher sorption capacity of the casts was not owing to the lowered pH of the casts, but mainly to the higher fine particles in the casts and the possible changes of nature of the soil organic matter through the earthworm gut passage. Our results indicate that geophagous earthworms may change sorption behavior and thus the bioavailability and transport of chlorophenols in soil. Earthworm effects should be considered when evaluating the environmental behavior and risk of organic pollutants in the ecosystems where earthworms are abundant.  相似文献   

11.
Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration.  相似文献   

12.
《Chemosphere》2011,82(11):1549-1559
Harmful effects of potentially toxic elements (PTE’s) in soils relate to their geochemically reactive fraction. To assess the degree of the reactivity, specific extractions or models are needed. Here we applied a 0.43 M HNO3 chemical extraction to assess reactive pools of a broad range of PTE’s in 136 contaminated and non-contaminated soils. Furthermore we derived Freundlich-type models based on commonly available soil properties (pH, organic carbon and clay) as well as extended models that used other properties such as amorphous Al and Fe oxides and evaluated their possible use in risk assessment.The approach allowed to predict the reactivity of As, Hg, Co, U, Ba, Se, Sb, Mo, Li, Be (r2: 0.55–0.90) elements not previously included in such studies, as well as that of Cd, Zn, Cu, Pb, Ni and Cr (r2: 0.73–0.90). The inclusion of pH, organic carbon and clay improved the performance of all models except for Be and Mo, although the role of clay is not completely clear and requires further investigation. The ability of amorphous metal oxides to affect the reactivity of As, Hg, Cu, Ni, Cr, Sb, Mo and Li was expressed by the models in agreement with known geochemical processes leading to the retention of PTE’s by the solid matrix. Hence, such approach can be a useful tool to account for regional differences in soil properties during the identification of risk areas and constitute a significantly more powerful tool than the analysis of total pools of PTE’s in soils.  相似文献   

13.
以建筑黄砂为对照,采用排水管道清通作业产生的管道沉砂作为提高土壤渗透性能的改良材料,通过模拟土柱实验考察了雨水花园对路面径流污染的控制效果.实验结果表明,在装置初始运行阶段,模拟柱中污染物的淋出浓度迅速降低,污染地下水的风险很低;当污染物淋失达到稳定时,掺加同比例管道沉砂与建筑黄砂的模拟柱在提高土壤渗透速率方面效果相近,而对COD、TP、TSS、NH4+-N、NO3--N、重金属等污染物的去除两者效果则相差不大.结果表明,以管道沉砂作为土壤改良材料,在降低南方粘性土壤地区雨水花园的建造成本、实现废弃物的再利用方面具有良好前景.  相似文献   

14.
The behavior of chlorantraniliprole (CAP) and dinotefuran (DNF) insecticides was investigated in clay loam soil, a common type of the Egyptian soil. Effect of temperature, pH and particle size of the soil on the adsorption process was studied. Adsorption isotherm by bulk soil and its constituents; humic acid (HA), clay, silt and sand fractions was measured using batch equilibration technique. The results showed that the adsorption of the insecticides tested was significantly affected by the temperature and was a spontaneous interfacial process in the soil. Freundlich model accurately predicted the adsorption behavior of both insecticides. The interaction between soil and insecticides was endothermic and the highest adsorption for CAP and DNF was obtained at pH 9. However, the effect of pH on the adsorption of DNF was lower than that of CAP. Sorption of CAP and DNF on HA fraction was significantly greater than on clay fraction and bulk soil. In addition, the adsorption was significantly increased with particle size decrease. It could be inferred that the adsorption of CAP and DNF on clay loam soil was physical in nature and greatly influenced by the soil components, pH and temperature.  相似文献   

15.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

16.
The hydrolysis of the insecticide pyraclofos in buffered solutions at pH 5.0, 7.0 and 9.0, and its sorption on four soils of different physicochemical properties were investigated. The results showed that the degradation of pyraclofos in buffered solutions followed pseudo-first-order kinetics. At 40°C, the rate constants for the hydrolysis of pyraclofos at pH 5.0, 7.0 and 9.0 were 0.0214, 0.1293, and 2.1656 d?1, respectively. Pyraclofos was relatively stable under both acidic and neutral conditions, while it was readily hydrolyzed under basic conditions. The sorption of pyraclofos on four soils was well described by the Freundlich equation. The sorption constant, K f, increased with an increase in soil organic carbon content, suggesting that organic carbon content was an important factor affecting sorption. The K oc values for Xiaoshan clay loam soil, Hangzhou I clay loam soil, Hangzhou II soil, and Fuyang silt loam soil were 30.4, 6.7, 5.3, and 7.1, respectively. These results suggest that the sorption of pyraclofos on the tested soils was relatively weak.  相似文献   

17.
Sorption of 3,4-dichloroaniline (3,4-DCA) on four typical Greek agricultural soils, with distinct texture, organic matter content and cation exchange capacities, was compared by using sorption isotherms and the parameters calculated from the fitted Freundlich equations. The sorption process of 3,4-DCA to the soil was completed within 48–72 h. The 3,4-DCA sorption on all soils was well described by the Freundlich equation and all sorption isotherms were of the L-type. The sandy clay loam soil with the highest organic matter content and a slightly acidic pH was the most sorptive, whereas the two other soil types, a high organic matter and neutral pH clay and a low organic matter and acidic loam, had an intermediate sorption capacity. A typical calcareous soil with low organic matter had the lowest sorption capacity which was only slightly higher than that of river sand. The 3,4-DCA sorption correlated best to soil organic matter content and not to clay content or cation exchange capacity, indicating the primary role of organic matter. The distribution coefficient (K d) decreased with increasing initial 3,4-DCA concentration and the reduction was most pronounced with the highly sorptive sandy clay loam soil, suggesting that the available sorption sites of the soils are not unlimited. Liming of the two acidic soils (the sandy clay loam and the loam) raised their pH (from 6.2 and 5.3, respectively) to 7.8 and reduced their sorption capacity by about 50 %, indicating that soil pH may be the second in importance factor (after organic matter) determining 3,4-DCA sorption.  相似文献   

18.
19.
Management of soils to reduce the amount of PM10 emitted during agricultural tillage operations is important for attainment of air quality standards in California's San Joaquin Valley (SJV). The purpose of this study was to improve and expand upon earlier work of predicting tillage-generated dust emissions based on soil properties. We focus on gravimetric soil water content (GWC) and soil texture. A mechanical laboratory dust generator was used to test 23 soils collected for this study. Averaged results showed PM10 concentrations (mg m?3) increased logarithmically as GWC decreased below soil water potentials of ?1500 kPa. Soils with clay contents less than about 10% by weight began to emit PM10 at GWCs 1.5–4 times their GWC at ?1500 kPa. Soils with clay contents greater than about 10% began to emit PM10 at GWC values closer to ?1500 kPa. We found no correlation between maximum PM10 concentrations, measured at low GWC values, and the %sand, %silt, or %clay in a soil. However, there was a significant correlation between the %silt to %clay ratio and PM10 concentrations. This not only suggests the dependence of dust emission magnitudes on the supply of particles of PM10 size, but also the importance of clay in stabilizing aggregates and maintaining higher amounts of capillary water at lower water potentials. Based on modeled results of pooled data, PM10 concentrations increased linearly (slope = 564) for every unit increase in the %silt to %clay ratio. However, when soils were separated into groups based on clay content, the slopes for PM10 concentrations vs. %silt to %clay ratio were texture dependent. The slope for soils with <10% clay (slope = 727) was 3.3 times greater than for soils with >20% clay (slope = 221). Improved PM10 emission prediction based on soil properties should improve management decisions aimed at reducing tillage-generated PM10.  相似文献   

20.
In the process of remediation of mine sites, the establishment of a vegetation cover is one of the most important tasks. This study tests two different approaches to manipulate soil properties in order to facilitate plant growth. Mine waste from Ingurtosu, Sardinia, Italy rich in silt, clay, and heavy metals like Cd, Cu, and Zn was used in a series of greenhouse experiments. Bacteria with putative beneficial properties for plant growth were isolated from this substrate, propagated and consortia of ten strains were used to inoculate the substrate. Alternatively, sand and volcanic clay were added. On these treated and untreated soils, seeds of Helianthus annuus, of the native Euphorbia pithyusa, and of the grasses Agrostis capillaris, Deschampsia flexuosa and Festuca rubra were germinated, and the growth of the seedlings was monitored. The added bacteria established well under all experimental conditions and reduced the extractability of most metals. In association with H. annuus, E. pithyusa and D. flexuosa bacteria improved microbial activity and functional diversity of the original soil. Their effect on plant growth, however, was ambiguous and usually negative. The addition of sand and volcanic clay, on the other hand, had a positive effect on all plant species except E. pithyusa. Especially the grasses experienced a significant benefit. The effects of a double treatment with both bacteria and sand and volcanic clay were rather negative. It is concluded that the addition of mechanical support has great potential to boost revegetation of mining sites though it is comparatively expensive. The possibilities offered by the inoculation of bacteria, on the other hand, appear rather limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号