首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06–0.11 mg/kg and 0.03–0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31–15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10?6, respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2(1) = 17.280, p = 0.00003).  相似文献   

2.
Increasing application of nitrogen fertilizers in the irrigated lands of the studied area is likely to create a blanket non-point source of nitrate. Groundwater contamination from fertilizers, in this context, has been reported as derived from N03, K+ and 180 composition of groundwater. The data suggest both point and non-point sources of groundwater pollution. Thirty-three percent of the groundwater samples showed nitrate contents exceeding the general acceptable limit of 20 p.p.m. and 15% of the samples crossed the maximum permissible limit of 45 p.p.m. High nitrate levels are associated with high δ18O values, clearly indicating that significant quantities of evaporated (isotopically enriched) irrigation water infiltrate along with fertilizer nitrate to the groundwater system. Different δ18O---N03 trends suggest isotopically distinct, non-point source origins which vary spatially and temporally, due to different degrees of evaporation/recharge and amounts of fertilizer applied. A scatter diagram of N03 vs K+ suggests a common source of these ions when the concentration is less than 40 p.p.m. The investigation indicates that a combination of isotope (180) and hydrochemical data can clearly characterize the impact of fertilizer on groundwater. Application of high nitrate, high potassium groundwater irrigation can minimize the requirement for inorganic fertilizers and bring down the cost of cultivation considerably, through appropriate management of fertilizer and water and modifications in agronomic practices and strategies on crops grown. Such practices will help protect groundwater from further degradation.  相似文献   

3.
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m3, respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: ‘diesel’ (56.3 % of total PAHs on average), ‘gasoline’ (15.5 %), ‘wood combustion, and incineration’ (13 %), ‘industry’ (9.2 %), and ‘road soil particle’ (6.0 %). The four n-alkane source factors identified were: ‘petrogenic’ (65 % of total n-alkanes on average), ‘mixture of petrogenic and biomass burning’ (15 %), ‘mixture of biogenic and fossil fuel’ (11.5 %), and ‘biogenic’ (8.5 %). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4 % of total PAHs and 5.0 % of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.  相似文献   

4.
This study is focused on the effective removal of recalcitrant pollutants hexaclorocyclohexanes (HCHs, isomers α, β, γ, and δ) and chlorobenzenes (CBs) present in a real groundwater coming from a landfill of an old lindane factory. Groundwater is characterized by a total organic carbon (TOC) content of 9 mg L?1, pH0?=?7, conductivity?=?3.7 mS cm?1, high salt concentration (SO42?, HCO3?, Cl?), and ferrous iron in solution. The experiments were performed using a BDD anode and a carbon felt (CF) cathode at the natural groundwater pH and without addition of supporting electrolyte. The complete depletion of the four HCH isomers and a mineralization degree of 90% were reached at 4-h electrolysis with a current intensity of 400 mA, the residual TOC (0.8 mg L?1) corresponding mainly to formic acid. A parallel series reaction pathway was proposed: HCHs and CBs are transformed into chlorinated and hydroxylated intermediates that are rapidly oxidized to non-toxic carboxylic acids and/or mineralized, leading to a rapid decrease in solution pH.  相似文献   

5.
Indoor dust samples were collected from 40 homes in Kocaeli, Turkey and were analyzed simultaneously for 14 polybrominated diphenyl ethers (PBDEs) and 16 poly aromatic hydrocarbons (PAHs) isomers. The total concentrations of PBDEs (Σ14PBDEs) ranged from 29.32 to 4790 ng g?1, with a median of 316.1 ng g?1, while the total indoor dust concentrations of 16 PAHs (Σ16PAHs) extending over three to four orders of magnitude ranged from 85.91 to 40,359 ng g?1 with a median value of 2489 ng g?1. Although deca-PBDE products (BDE-209) were the principal source of PBDEs contamination in the homes (median, 138.3 ng g?1), the correlation in the homes was indicative of similar sources for both the commercial penta and deca-PBDE formulas. The PAHs diagnostic ratios indicated that the main sources of PAHs measured in the indoor samples could be coal/biomass combustion, smoking, and cooking emissions. For children and adults, the contributions to ∑14PBDEs exposure were approximately 93 and 25 % for the ingestion of indoor dust, and 7 and 75 % for dermal contact. Exposure to ∑16PAHs through dermal contact was the dominant route for both children (90.6 %) and adults (99.7 %). For both groups, exposure by way of inhalation of indoor dust contaminated with PBDEs and PAHs was negligible. The hazard index (HI) values for BDE-47, BDE-99, BDE-153, and BDE-209 were lower than the safe limit of 1, and this result suggested that none of the population groups would be likely to experience potential health risk due to exposure to PBDEs from indoor dust in the study area. Considering only ingestion + dermal contact, the carcinogenic risk levels of both B2 PAHs and BDE-209 for adults were 6.2 × 10?5 in the US EPA safe limit range while those for children were 5.6 × 10?4 and slightly higher than the US EPA safe limit range (1 × 10?6 and 1 × 10?4). Certain precautions should be considered for children.  相似文献   

6.
Olive tree leaf samples were collected to investigate their possible use for biomonitoring of lipophilic toxic substances. The samples were analyzed for 28 polychlorinated biphenyls (PCB) congeners. Twelve congeners were detected in the samples. PCB-60, 77, 81, 89, 105, 114, and 153 were the most frequently detected congeners ranging from 32 % for PCB-52 to 97 % for PCB-81. Σ12PCBs concentration varied from below detection limit to 248 ng/g wet weight in the sampling area, while the mean congener concentrations ranged from 0.06 ng/g (PCB-128?+?167) to 64.2 ng/g wet weight (PCB-60). Constructed concentration maps showed that olive tree leaves can be employed for the estimation of spatial distrubution of these congeners.  相似文献   

7.
A total of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediment samples from Taihu Lake were analyzed by instruments, and sediment extracts were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-o-deethylase (EROD) induction using a rat hepatoma cell line (H4IIE). The cause–effect relationship between the observed EROD activity and chemical concentrations of PAHs was examined. Our results showed that sediment extracts could induce significant AhR effects, and the bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents of raw extracts (TEQbios) ranged from 2.7 to 39.8 pg g?1 dw. Chemical analysis showed that 16 PAHs were all detected in all samples, and their total concentrations (Σ16PAHs) ranged from 179.8 to 1,669.4 ng g?1 dw. The abundance of sedimentary PAHs in the three regions (Meiliang Bay, Gonghu Bay, and Xukou Bay) showed a decreasing trend from the inflow region to the outflow region. Chemical analysis-derived TEQs (TEQcals) contributed by PAHs ranged from 1.6 to 20.7 pg g?1 dw. The mean contribution rates (CRs) of PAHs to TEQbios were 48.9 %. In Meiliang Bay, EROD effects of 60 % samples were caused by PAHs whose CRs were more than 60 %, while in most sampling sites of Gonghu Bay and Xukou Bay, the CRs of PAHs to TEQbios were basically below 40 %. In addition, preliminary ecological risk assessment found that PAHs in sediments have very low ecological impact based on the chemical data of PAHs, while the sediments might pose an unacceptable risk to aquatic organisms and their predators based on the data of TEQbio. These findings showed that EROD effects of sediment extracts from Taihu Lake were also caused by other compounds, such as dioxins, polychlorinated biphenyls, etc., together.  相似文献   

8.
Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran’s subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4?±?26.3 and 52.3?±?16.5 μg m?3 in the platform and 81.8?±?22.2 and 35?±?17.6 μg m?3 in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6?±?23 and 41.3?±?20.4 μg m?3 in the platform and 73.9?±?17.3 and 30?±?15 μg m?3, in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43 % (PM10) and 47.7 % (PM2.5) in platform of Imam Khomeini station and 15.9 % (PM10) and 18.5 % (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6 % (PM10) and 39.8 % (PM2.5) in platform and was 11.7 % (PM10) and 14.3 % (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3 % in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8 % of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5 % in the outdoor air, respectively. Other major crustal elements were 5.8 % (PM10) and 5.3 % (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4 % in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7 % in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.  相似文献   

9.
Total suspended particulate (TSP) samples were collected during dust, haze, and two festival events (Holi and Diwali) from February 2009 to June 2010. Pollutant gases (NO2, SO2, and O3) along with the meteorological parameters were also measured during the four pollution events at Agra. The concentration of pollutant gases decreases during dust events (DEs), but the levels of the gases increase during other pollution events indicating the impact of anthropogenic emissions. The mass concentrations were about two times higher during pollution events than normal days (NDs). High TSP concentrations during Holi and Diwali events may be attributed to anthropogenic activities while increased combustion sources in addition to stagnant meteorological conditions contributed to high TSP mass during haze events. On the other hand, long-range transport of atmospheric particles plays a major role during DEs. In the dust samples, Ca2+, Cl?, NO3 ?, and SO4 2? were the most abundant ions and Ca2+ alone accounted for 22 % of the total ionic mass, while during haze event, the concentrations of secondary aerosols species, viz., NO3 ?, SO4 2?, and NH4 +, were 3.6, 3.3, and 5.1 times higher than the normal days. During Diwali, SO4 2? concentration (17.8 μg?m?3) was highest followed by NO3 ?, K+, and Cl? while the Holi samples were strongly enriched with Cl? and K+ which together made up 32.7 % of the total water-soluble ions. The ion balances indicate that the haze samples were acidic. On the other hand, Holi, Diwali, and DE samples were enriched with cations. The carbonaceous aerosol shows strong variation with the highest concentration during Holi followed by haze, Diwali, DEs, and NDs. However, the secondary organic carbon concentration follows the order haze > DEs > Diwali > Holi > NDs. The scanning electron microscope/EDX results indicate that KCl and carbon-rich particles were more dominant during Holi and haze events while DE samples were enriched with particles of crustal origin.  相似文献   

10.
Biodegradability of a polyacrylate superabsorbent in agricultural soil   总被引:1,自引:0,他引:1  
Superabsorbent polymers (SAP) are used, inter alia, as soil amendment to increase the water holding capacity of soils. Biodegradability of soil conditioners has become a desired key characteristic to protect soil and groundwater resources. The present study characterized the biodegradability of one acrylate based SAP in four agricultural soils and at three temperatures. Mineralisation was measured as the 13CO2 efflux from 13C-labelled SAP in soil incubations. The SAP was either single-labelled in the carboxyl C-atom or triple-labelled including additionally the two C-atoms interlinked in the SAP backbone. The dual labelling allowed estimating the degradation of the polyacrylate main chain. The 13CO2 efflux from samples was measured using an automated system including wavelength-scanned cavity ring-down spectroscopy. Based on single-labelled SAP, the mean degradation after 24 weeks varied between 0.45 % in loamy sand and 0.82 % in loam. However, the differences between degradation rates in different soils were not significant due to a large intra-replicate variability. Similarly, mean degradation did not differ significantly between effective temperature regimes of 20° and 30 °C after 12 weeks. Results from the triple-labelled SAP were lower as compared to their single-labelled variant. Detailed results suggest that the polyacrylate main chain degraded in the soils, if at all, at rates of 0.12–0.24 % per 6 months.  相似文献   

11.
Riparian buffer zones are the only measure which has been used extensively in Sweden to reduce phosphorus losses from agricultural land. This paper describes how the FyrisSKZ web tool can be used to evaluate allocation scenarios using data from the Svärta River, an agricultural catchment located in central Sweden. Three scenarios are evaluated: a baseline, a uniform 6-m-wide buffer zone in each sub-catchment, and an allocation of areas of buffer zones to sub-catchments based on the average cost of reduction. The total P reduction increases by 30 % in the second scenario compared to the baseline scenario, and the average reduction per hectare increases by 90 % while total costs of the program fall by 32 %. In the third scenario, the average cost per unit of reduction (€163 kg P?1) is the lowest of the three scenarios (58 % lower than the baseline) and has the lowest total program costs.  相似文献   

12.
TiO2-supported activated carbon felts (TiO2–ACFTs) were prepared by dip coating of felts composed of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) and/or a polyethylene pulp (PE-W15) in a TiO2 aqueous suspension followed by calcination at 250 °C for 1 h. The as-prepared TiO2–ACFTs with 29–35 wt.% TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. The TiO2–ACFT(PS-A20) samples with 0 and 29 wt.% TiO2 were microporous with specific surface areas (S BET) of 996 and 738 m2/g, respectively, whereas the TiO2–ACFT(PE-W15) samples with 0 and 35 wt.% TiO2 were mesoporous with S BET of 826 and 586 m2/g, respectively. Adsorption and photocatalytic activity of the as-prepared samples were evaluated by measuring adsorption in the dark and photodegradation of gaseous acetaldehyde (AcH) and methylene blue (MB) in aqueous solution under UV light. The TiO2 loading caused a considerable decrease in the S BET and MB adsorption capacity along with an increase in MB photodegradation and AcH mineralization. Lemna minor was chosen as a representative aquatic plant for ecotoxicity tests measuring detoxification of water obtained from the MB photodegradation reaction with the TiO2–ACFT samples under UV light.  相似文献   

13.
This study was undertaken to develop and validate direct competitive ELISA for the determination of chloramphenicol residues in bovine milk. Antisera and an enzyme-tracer for chloramphenicol were prepared and used to develop an ELISA with inhibition concentrations, IC20 and IC50, of 0.09 and 0.44 ng mL?1, respectively. Milk samples were spiked with standards equivalent to 0, 0.2, 0.3, 0.5, 1.0 &; 1.5 ng mL?1 and extracted in methanol. The mean recoveries were found to be 73–100% with coefficient of variance 7–11%. The decision limit (CCα) and detection capability (CCβ) were calculated as 0.10 and 0.12 ng mL?1, respectively. The results were found comparable with the commercial ELISA, having recoveries of 87 to 100%, CCα 0.09 ng mL?1 and CCβ 0.12 ng mL?1. As per Commission Decision 2002/657/EC, in-house ELISA was further validated by using LC-MS/MS. Mass spectral acquisition was done by using electrospray ionization in the negative ion mode applying single reaction monitoring of the diagnostic transition reaction for CAP (m/z 152, 194 and 257). The calibration curve showed good linearity in concentrations from 0.025 to 1.6 ng mL?1 with correction coefficient 0.9902. The mean recoveries were found to be 88 to 100%. The CCα was calculated as 0.057 ng mL?1 and CCβ 0.10 ng mL?1. Since CCα and CCβ are less than half of the MRPL (0.15 ng mL?1), the test was found suitable for screening and quantification of CAP residues in bovine milk samples. Results of surveillance studies indicated that out of 31 analyzed milk samples, 12.9% samples were found with CAP residues but only 3.2% samples were declared positive with maximum concentration 0.31 ng mL?1, slightly above the MRPL.  相似文献   

14.
Impacts of simulated acid rain on recalcitrance of two different soils   总被引:2,自引:0,他引:2  
Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH?2.0, whereas only cation exchange occurred above SAR pH?3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K+ and Mg2+ ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca2+?>?K+?>?Mg2+?>?Na+ for the Plinthudult and Ca2+?>?Mg2+?>?Na+?>?K+ for the Paleudalfs soil. The SARs above pH?3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH?2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.  相似文献   

15.
A new polyclonal antibody (pAb) was prepared and used for the determination of polychlorinated biphenyls (PCBs) in air samples to promote the application of immunoassay technology in the determination of PCBs. Three PCB congeners immunogen mixture was used to stimulate immune responses in rabbits. The specific pAb to PCBs was obtained and used to develop an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA). A standard curve for Aroclor 1248 was prepared using concentrations ranging from 0.1 to 100 μg L?1. The average IC50 value was 16.21 μg L?1 and the limit of detection at 10 % inhibition (IC90) was 0.069 μg L?1. The entire procedure was then evaluated using spiked air samples. The recoveries of Aroclor 1248 at various spiking levels in the air samples ranged from 84 to 113 %, with relative standard deviations of 3 to 6 %. Under optimum conditions, the cross-reactivity profiles of the assays were obtained using three selected congeners, four Aroclor products, and other structurally related compounds of PCBs. The assays were found to be highly specific for PCB congeners and Aroclors 1248 and 1242. The air samples were then analyzed using gas chromatography coupled with high-resolution mass spectrometry to confirm the ic-ELISA results. The attained results demonstrated that the proposed method was an effective and inexpensive technique for the PCBs determination in air samples.  相似文献   

16.
A gas chromatography–mass spectrometry method has been proposed for the determination of low-level mutagenic and carcinogenic nitrosamines in particulate matter. The method includes the collection of particulate matters (PM2.5 and PM10) using a dichotomous Partisol 2025 sampler and extraction of the compounds from aqueous solution with dichloromethane/2-propanol after sonication with a slightly basic water solution prior to their GC-MS analysis in electron impact mode. The obtained recoveries of nitrosamines ranged from 92.4 to 99.2 %, and the precision of this method, as indicated by the relative standard deviations, was within the range of 0.95–2.46?%. The detection limits obtained from calculations using the GC-MS results based on S/N?=?3 were found within the range from 4 to 22 pg/m3. The predominant nitrosamines determined in particulate matter were N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodibutylamine and N-nitrosomorpholine. Furthermore, N-mono- and dinitrosopiperazine and N-nitrosoethylbutylamine were also determined. N-dinitrosopiperazine was detected in PM2.5 samples at the highest concentrations of up to 22.85 ng/m3 and in PM2.5–10 samples at concentrations up to 7.60 ng/m3 in winter, whereas it was found in PM2.5 samples up to 5.15 ng/m3 and in PM2.5–10 samples up to 3.12 ng/m3 in summer. The total concentrations of nitrosamines were up to 161.4 ng/m3 in fine and 53.90 ng/m3 in coarse fractions in winter, whereas in summer were up to 35.24 and 12.60 ng/m3, respectively. The concentration levels of nitrosamines fluctuated significantly within a year, with higher means and peak concentrations in the winter compared to that in the summertime. The seasonal variations of particle-associated nitrosamine concentrations were investigated together with their relationships with meteorological parameters using Pearson’s correlation analysis in the winter and summer periods. Analysis of variance was used to determine which concentrations of nitrosamines were statistically different from one another and, together with meteorological parameters and discriminant analysis, was used to classify the particle samples by particle size according to seasons. The classification results of the particle samples in different seasons were very satisfactory, allowing 99.5 % of cases to be correctly grouped.  相似文献   

17.
River Swarna, a small tropical river originating in Western Ghats (at an altitude of 1,160 m above mean sea level) and flowing in the southwest coast of India discharges an average of 54 m3s?1 of water into the Arabian Sea, of which significant part is being discharged during the monsoon. No studies have been made yet on the water chemistry of the Swarna River basin, even as half a million people of Udupi district use it for domestic and irrigational purposes. As large community in this region depends on the freshwater of Swarna River, there is an urgent need to study the trace element geochemistry of this west flowing river for better water management and sustainable development. The paper presents the results on the biogeochemistry of dissolved trace elements in the Swarna River for a period of 1 year. The results obtained on the trace elements show seasonal effect on the concentrations as well as behavior and thus forming two groups, discharge driven (Li, Be, Al, V, Cr, Ni, Zr, In, Pb, Bi and U) and base flow driven (groundwater input; Mn, Fe, Co, Cu, Ga, Zn, As, Se, Rb, Sr, Ag, Cd, Cs, Ba and Tl) trace elements in Swarna River. The biogeochemical processes explained through Hierarchical Cluster Analysis show complexation of Fe, Ga and Ba with dissolved organic carbon, redox control over Mn and Tl and biological control over V and Ni. Also, the water quality of Swarna River remains within the permissible limits of drinking water standards.  相似文献   

18.
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1).  相似文献   

19.
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L?1, and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L?1), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L?1 and 20.4, 9.0, 21.6, and 13.0 ng L?1, respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L?1 and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg?1), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg?1), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg?1). The relative standard deviation for the recovery of pesticides was under 15%.  相似文献   

20.
Six antibiotics, tetracyclines (TCs), and quinolones (QNs) in farmland soils from four coastal cities in Fujian Province of China were investigated. Oxytetracycline was most frequently detected, followed by enrofloxacin, ciprofloxacin, chlorotetracycline, ofloxacin, and tetracycline, with maximum concentrations of 613.2, 637.3, 237.3, 2668.9, 205.7, and 189.8 μg kg?1, respectively. Samples from Putian City contained the highest maximum concentration of ∑TCs (3,064.2 μg kg?1), whereas those from Fuzhou City contained the highest maximum concentration of ∑QNs (897.8 μg kg?1). It is noteworthy that the ∑TCs and ∑QNs in 46.4 and 28.6 % of samples exceeded the ecotoxic effect trigger value (100 μg kg?1), respectively. The concentrations of these antibiotics and five tetracycline resistance genes in four soil plots at depth profiles were quantified thereafter. In most cases, both antibiotics and resistance genes decreased with the increase of depth. Some antibiotics can be detected at a depth of 60–80 cm where the abundance of tetO, tetM, and tetX reached up to 107 copies g?1. Additionally, the sum of all tet genes (normalized to 16S rRNA genes) correlated with ∑TCs significantly (r?=?0.676). Our results suggest that resistance determinants can migrate to deeper soil layers and would probably contaminate groundwater by vertical transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号