首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of microarrays to monitor harmful algae across a broad range of ecological niches and toxic species responsible for harmful algal events has been one of the key tasks in the EU Seventh Framework Programme (FP7)-funded Microarrays for the Detection of Toxic Algae project. The technique has a strong potential for improving speed and accuracy of the identification of harmful algae and their toxins to assist monitoring programmes. Water samples were collected from a number of coastal sites around Ireland, including several that are used in the Irish National Phytoplankton and Biotoxin Monitoring Programme. Ribosomal RNA was extracted from filtered field samples, labelled with a fluorescent dye, and hybridised to probes spotted in a microarray format on a glass slide. The fluorescent signal intensity of the hybridisation to >120 probes on the chip was analysed and compared with actual field counts. There was a general agreement between cell counts and microarray signal. Results are presented for field samples taken from a range of stations along the Irish coastline known for harmful algal events during the first field trial (July 2009–April 2010).  相似文献   

2.
Harmful or nuisance algal blooms can cause economic damage to fisheries and tourism. Additionally, toxins produced by harmful algae and ingested via contaminated shellfish can be potentially fatal to humans. The seas around the Orkney Islands, UK currently hold a number of toxic algal species which cause shellfishery closures in most years. Extensive and costly monitoring programs are carried out to detect harmful microalgae before they reach action levels. However, the ability to distinguish between toxic and non-toxic strains of some algae is not possible using these methods. The microarrays for the detection of toxic algae (MIDTAL) microarray contains rRNA probes for toxic algal species/strains which have been adapted and optimized for microarray use. In order to investigate the use of the chip for monitoring in the Orkney Islands, samples were collected between 2009 and 2011 from Brings Deep, Scapa Flow, Orkney Islands, UK; RNA was extracted and hybridized with generation 2 and 3.1 of the chip. The data were then compared to cell counts performed under light microscopy and in the case of Alexandrium tamarense to qPCR data targeting the saxitoxin gene and the LSU-rRNA gene. A good agreement between cell numbers and microarray signal was found for A. tamarense, Pseudo-nitzschia sp., Dinophysis sp. (r?<?0.5, for all) in addition to this there the chip successfully detected a large bloom of Karenia mikimotoi (r?<?0.70) in August and September 2011. Overall, there was good improvement in probe signal between generation 2 and generation 3.1 of the chip with much less variability and more consistent results and better correlation between the probes. The chip performed well for A. tamarense group I signal to cell numbers in calibrations (r?>?0.9). However, in field samples, this correlation was slightly lower suggesting interactions between all species in the sample may affect signal. Overall, the chip showed it could identify the presence of target species in field samples although some work is needed to improve the quantitative nature of the chip before it would be suitable for monitoring in the Orkney Islands.  相似文献   

3.
Monitoring of marine microalgae is important to predict and manage harmful algal blooms. Microarray Detection of Toxic ALgae (MIDTAL) is an FP7-funded EU project aiming to establish a multi-species microarray as a tool to aid monitoring agencies. We tested the suitability of different prototype versions of the MIDTAL microarray for the monthly monitoring of a sampling station in outer Oslofjorden during a 1-year period. Microarray data from two different versions of the MIDTAL chip were compared to results from cell counts (several species) and quantitative real-time PCR (qPCR; only Pseudochattonella spp.). While results from generation 2.5 microarrays exhibited a high number of false positive signals, generation 3.3 microarray data generally correlated with microscopy and qPCR data, with three important limitations: (1) Pseudo-nitzschia cells were not reliably detected, possibly because cells were not sufficiently retained during filtration or lysed during the extraction, and because of low sensitivity of the probes; (2) in the case of samples with high concentrations of non-target species, the sensitivity of the arrays was decreased; (3) one occurrence of Alexandrium pseudogonyaulax was not detected due to a 1-bp mismatch with the genus probe represented on the microarray. In spite of these shortcomings our data demonstrate the overall progress made and the potential of the MIDTAL array. The case of Pseudochattonella — where two morphologically similar species impossible to separate by light microscopy were distinguished — in particular, underlines the added value of molecular methods such as microarrays in routine phytoplankton monitoring.  相似文献   

4.
Microalgae worldwide regularly cause harmful effects, considered from the human perspective, in that they cause health problems and economic damage to fisheries and tourism. Cyanobacteria cause similar problems in freshwaters. These episodes encompass a broad range of phenomena collectively referred to as “harmful algal blooms” (HABs). For adequate management of these phenomena, monitoring of microalgae is required. However, effective monitoring is time-consuming because cell morphology as determined by light microscopy may be insufficient to give definitive species and toxin attribution. In the European Union FP7 project MIDTAL (Microarrays for the Detection of Toxic Algae), we achieved rapid species identification using rRNA genes as the target. These regions can be targeted for probe design to recognise species or even strains. We also included antibody reactions to specific toxins produced by these microalgae because, even when cell numbers are low, toxins can be present and can accumulate in the shellfish. Microarrays are the state-of-the-art technology in molecular biology for the processing of bulk samples for detection of target RNA/DNA sequences. After 36 months, we have completed RNA-cell number–signal intensity calibration curves for 18 HAB species and the analysis of monthly field samples from five locations from year 1. Results from one location, Arcachon Bay (France), are reported here and compared favourably with cell counts in most cases. In general, the microarray was more sensitive than the cell counts, and this is likely a reflection in the difference in water volume analysed with the volume filtered for the microarray an order of magnitude greater.  相似文献   

5.
Phytoflagellates of the genus Pseudochattonella (Dictyochophyceae, Ochrophyta) form blooms in marine coastal waters in northern Europe, Japan, and New Zealand that at times cause fish kills with severe losses for the aquaculture industry. The aim of this study was to develop molecular probes for the detection and identification of Pseudochattonella at the genus and species level. A variety of probes were developed and applied to either dot blot hybridization, (q)PCR, or microarray format. In the dot blot hybridization assay, five different oligonucleotide probes targeting the small subunit (SSU) rDNA were tested against DNA from 18 microalgal strains and shown to be specific to the genus Pseudochattonella. A genus-specific PCR assay was developed by identifying an appropriate primer pair in the SSU—internal transcribed spacer 1 (ITS1) rDNA region. Its specificity was tested by screening against both target and non-target strains, and the assay was used to confirm the presence or absence of Pseudochattonella species in environmental samples. In order to distinguish between the two species of the genus, two PCR primer pairs each biased towards one of the species were designed in the large subunit (LSU) rDNA D1 domain and used for quantitative real-time PCR. Five selected probes (three SSU and two LSU rDNA) were adapted for the use on microarrays and included on a prototype multi-species microarray for the detection of harmful algae (http://www.midtal.com). Finally, microarrays and qPCR were used for the monthly monitoring of a sampling site in outer Oslofjorden during a 1-year period. Members of Pseudochattonella are difficult to identify by light microscopy in Lugol’s preserved samples, and the two species Pseudochattonella verruculosa and Pseudochattonella farcimen can be morphologically distinguished only by transmission electron microscopy. The molecular probes designed in this study will be a valuable asset to microscopical detection methods in the monitoring of harmful algae and for biogeographical and ecological studies of this genus.  相似文献   

6.
Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project (http://www.midtal.com). The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space.  相似文献   

7.
The planktonic diatom genus Pseudo-nitzschia contains several genetically closely related species. Some of these can produce domoic acid, a potent neurotoxin. Thus, monitoring programs are needed to screen for the presence of these toxic species. Unfortunately, many are impossible to distinguish using light microscopy. Therefore, we assessed the applicability of microarray technology for detection of toxic and non-toxic Pseudo-nitzschia species in the Gulf of Naples (Mediterranean Sea). Here, 11 species have been detected, of which at least 5 are potentially toxic. A total of 49 genus- and species-specific DNA probes were designed in silico against the nuclear LSU and SSU rRNA of 19 species, and spotted on the microarray. The microarray was tested against total RNA of monoclonal cultures of eight species. Only three of the probes designed to be species-specific were indeed so within the limits of our experimental design. To assess the effectiveness of the microarray in detecting Pseudo-nitzschia species in environmental samples, we hybridized total RNA extracted from 11 seasonal plankton samples against microarray slides and compared the observed pattern with plankton counts in light microscopy and with expected hybridization patterns obtained with monoclonal cultures of the observed species. Presence of species in field samples generally resulted in signal patterns on the microarray as observed with RNA extracted from cultures of these species, but many a-specific signals appeared as well. Possible reasons for the numerous cross reactions are discussed. Calibration curves for Pseudo-nitzschia multistriata showed linear relationship between signal strength and cell number.  相似文献   

8.
《Chemosphere》2010,78(11):1585-1593
Although Microcystis-based toxins have been intensively studied, previous studies using laboratory cultures of Microcystis strains are difficult to explain the phenomenon that microcystin concentrations and toxin variants in natural blooms differ widely and frequently within a short-term period. The present study was designed to unravel the mechanisms for the frequent variations of intracellular toxins related to the differences in cyanobacterial colonies during bloom seasons in Lake Taihu, China. Monitoring of Microcystis colonies during warm seasons indicated that the variations in microcystins in both concentrations and toxin species were associated with the frequent alteration of Microcystis colonies in Lake Taihu. High concentration of microcystins in the blooms was always associated with two Microcystis colonies, Microcystis flos-aquae and Microcystis aeruginosa, whereas when Microcystis wesenbergii was the dominant colonial type, the toxin production of the blooms was low. Additionally, environmental factors such as temperature and nutrition were also shown to have an effect on the toxin production of the blooms, and may also potentially influence the Microcystis species present. The results of the present study provides insight into a new consideration for quick water quality monitoring, assessment and risk alert in cyanobacterium- and toxin-contaminated freshwaters, which will be beneficial not only for water agencies but also for public health.  相似文献   

9.
In the last decade, various molecular methods (e.g., fluorescent hybridization assay, sandwich hybridization assay, automatized biosensor detection, real-time PCR assay) have been developed and implemented for accurate and specific identification and estimation of marine toxic microalgal species. This review focuses on the recent quantitative real-time PCR (qrt-PCR) technology developed for the control and monitoring of the most important taxonomic phytoplankton groups producing biotoxins with relevant negative impact on human health, the marine environment, and related economic activities. The high specificity and sensitivity of the qrt-PCR methods determined by the adequate choice of the genomic target gene, nucleic acid purification protocol, quantification through the standard curve, and type of chemical detection method make them highly efficient and therefore applicable to harmful algal bloom phenomena. Recent development of qrt-PCR-based assays using the target gene of toxins, such as saxitoxin compounds, has allowed more precise quantification of toxigenic species (i.e., Alexandrium catenella) abundance. These studies focus only on toxin-producing species in the marine environment. Therefore, qrt-PCR technology seems to offer the advantages of understanding the ecology of harmful algal bloom species and facilitating the management of their outbreaks.  相似文献   

10.
In Mexican waters, there is no a formal and well-established monitoring program of harmful algal blooms (HAB) events. Until now, most of the work has been focused on the characterization of organisms present in certain communities. Therefore, the development of new techniques for the rapid detection of HAB species is necessary. Capillary electrophoresis finger print technique (CE-SSCP) is a fingerprinting technique based on the identification of different conformers dependent of its base composition. This technique, coupled with capillary electrophoresis, has been used to compare and identify different conformers. The aim of this study was to determine if CE-SSCP analysis of ribosomal RNA (rRNA) gene fragments could be used for a rapid identification of toxic and harmful HAB species to improve monitoring activities along the coasts of Baja California Sur, Mexico.Three different highly variable regions of the 18S and 28S rRNA genes were chosen and their suitability for the discrimination of different dinoflagellate species was assessed by CE-SSCP.The CE-SSCP results obtained for the LSU D7 fragment has demonstrated that this technique with this gene region could be useful for the identification of the ten dinoflagellates species of different genera.We have shown that this method can be used to discriminate species and the next step will be to apply it to natural samples to achieve our goal of molecular monitoring for toxic algae in Mexican waters. This strategy will offer an option to improve an early warning system of HAB events for coastal BCS, allowing the possible implementation of mitigation strategies. A monitoring program of HAB species using molecular methods will permit the analysis of several samples in a short period of time, without the pressure of counting with a taxonomic expert in phytoplankton taxonomy.  相似文献   

11.
Monitoring of marine microalgae is important to predict and manage harmful algae blooms. It currently relies mainly on light-microscopic identification and enumeration of algal cells, yet several molecular tools are currently being developed to complement traditional methods. MIcroarray Detection of Toxic ALgae (MIDTAL) is an FP7-funded EU project aiming to establish a hierarchical multispecies microarray as one of these tools. Prototype arrays are currently being tested with field samples, yet the analysis of the large quantities of data generated by these arrays presents a challenge as suitable analysis tools or protocols are scarce. This paper proposes a two-part protocol for the analysis of the MIDTAL and other hierarchical multispecies arrays: Signal-to-noise ratios can be used to determine the presence or absence of signals and to identify potential false-positives considering parallel and hierarchical probes. In addition, normalized total signal intensities are recommended for comparisons between microarrays and in order to relate signals for specific probes to cell concentrations using external calibration curves. Hybridization- and probe-specific detection limits can be calculated to help evaluate negative results. The suggested analyses were implemented in “GPR-Analyzer”, a platform-independent and graphical user interface-based application, enabling non-specialist users to quickly and quantitatively analyze hierarchical multispecies microarrays. It is available online at http://folk.uio.no/edvardse/gpranalyzer.  相似文献   

12.
Birds of prey, owls and falcons are widely used as sentinel species in raptor biomonitoring programmes. A major current challenge is to facilitate large-scale biomonitoring by coordinating contaminant monitoring activities and by building capacity across countries. This requires sharing, dissemination and adoption of best practices addressed by the Networking Programme Research and Monitoring for and with Raptors in Europe (EURAPMON) and now being advanced by the ongoing international COST Action European Raptor Biomonitoring Facility. The present perspective introduces a schematic sampling protocol for contaminant monitoring in raptors. We provide guidance on sample collection with a view to increasing sampling capacity across countries, ensuring appropriate quality of samples and facilitating harmonization of procedures to maximize the reliability, comparability and interoperability of data. The here presented protocol can be used by professionals and volunteers as a standard guide to ensure harmonised sampling methods for contaminant monitoring in raptors.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01341-9) contains supplementary material, which is available to authorized users.  相似文献   

13.
Reports of toxic harmful algal blooms (HABs) attributed to the diatom Pseudo-nitzschia spp. have been increasing in California during the last several decades. Whether this increase can be attributed to enhanced awareness and monitoring or to a dramatic upswing in the development of HAB events remains unresolved. Given these uncertainties, the ability to accurately and rapidly identify an emerging HAB event is of high importance. Monitoring of HAB species and other pertinent chemical/physical parameters at two piers in southern California, Newport and Redondo Beach, was used to investigate the development of a site-specific bloom definition for identifying emerging domoic acid (DA) events. Emphasis was given to abundances of the Pseudo-nitzschia seriata size category of Pseudo-nitzschia due to the prevalence of this size class in the region. P. seriata bloom thresholds were established for each location based on deviations from their respective long-term mean abundances, allowing the identification of major and minor blooms. Sixty-five percent of blooms identified at Newport Beach coincided with measurable DA concentrations, while 36 % of blooms at Redondo Beach coincided with measurable DA. Bloom definitions allowed for increased specificity in multiple regression analysis of environmental forcing factors significant to the presence of DA and P. seriata. The strongest relationship identified was between P. seriata abundances 2 weeks following upwelling events at Newport Beach.  相似文献   

14.
In the scope of the development of a microarray PhyloChip for the detection of toxic phytoplankton species, we designed a large series of probes specific against targets in the nuclear large subunit (LSU) rRNA of a range of Pseudo-nitzschia species and spotted these onto the microarray. Hybridisation with rRNA extracted from monoclonal cultures and from plankton samples revealed many cross-reactions. In the present work, we tested the functionality and specificity of 23 of these probes designed against ten of the species, using a dot-blot procedure. In this case, probe specificity is tested against the target region in PCR products of the LSU rRNA gene marker region blotted on nitrocellulose filters. Each filter was incubated with a species-specific oligoprobe. Eleven of the tested probes showed specific responses, identifying seven Pseudo-nitzschia species. The other probes showed non-specific responses or did not respond at all. Results of dot-blot hybridisations are more specific than those obtained with the microarray approach and the possible reasons for this are discussed.  相似文献   

15.
16.
A multiplex surface plasmon resonance (SPR) biosensor method for the detection of paralytic shellfish poisoning (PSP) toxins, okadaic acid (and analogues) and domoic acid was developed. This method was compared to enzyme-linked immunosorbent assay (ELISA) methods. Seawater samples (n?=?256) from around Europe were collected by the consortia of an EU project MIcroarrays for the Detection of Toxic Algae (MIDTAL) and evaluated using each method. A simple sample preparation procedure was developed which involved lysing and releasing the toxins from the algal cells with glass beads followed by centrifugation and filtering the extract before testing for marine biotoxins by both multi-SPR and ELISA. Method detection limits based on IC20 values for PSP, okadaic acid and domoic acid toxins were 0.82, 0.36 and 1.66 ng/ml, respectively, for the prototype multiplex SPR biosensor. Evaluation by SPR for seawater samples has shown that 47, 59 and 61 % of total seawater samples tested positive (result greater than the IC20) for PSP, okadaic acid (and analogues) and domoic acid toxins, respectively. Toxic samples were received mainly from Spain and Ireland. This work has demonstrated the potential of multiplex analysis for marine biotoxins in algal and seawater samples with results available for 24 samples within a 7 h period for three groups of key marine biotoxins. Multiplex immunological methods could therefore be used as early warning monitoring tools for a variety of marine biotoxins in seawater samples.  相似文献   

17.
Massive blooms of the harmful benthic dinoflagellate Ostreopsis cf. ovata are of growing environmental concern in the Mediterranean, having recently caused adverse effects on benthic invertebrates and also some intoxication episodes to humans.The toxicological potential of produced palytoxin-like compounds was investigated in the present study on a typical marine sentinel species, the mussel Mytilus galloprovincialis. Organisms were sampled during various phases of a O. cf. ovata bloom, in two differently impacted sites. The presence of the algal toxins was indirectly assessed in mussels tissues (mouse test and hemolysis neutralization assay), while biological and toxicological effects were evaluated through the measurement of osmoregulatory and neurotoxic alterations (Na+/K+-ATPase and acetylcholinesterase activities), oxidative stress responses (antioxidant defences and total oxyradical scavenging capacity), lipid peroxidation processes (level of malondialdehyde), peroxisomal proliferation, organelle dysfunctions (lysosomal membrane stability, accumulation of lipofuscin and neutral lipids), immunological impairment (granulocytes percentage).Obtained results demonstrated a significant accumulation of algal toxins in mussels exposed to O. cf. ovata. These organisms exhibited a marked inhibition of the Na+/K+-ATPase activity and alterations of immunological, lysosomal and neurotoxic responses. Markers of oxidative stress showed more limited variations suggesting that toxicity of the O. cf. ovata toxins is not primarily mediated by an over production of reactive oxygen species. This study provided preliminary results on the usefulness of a multi-biomarker approach to assess biological alterations and toxicological events associated to blooms of O. cf. ovata in marine organisms.  相似文献   

18.
Harmful algal blooms (HABs) are a global problem, which can cause economic loss to aquaculture industry's and pose a potential threat to human health. More attention must be made on the development of effective detection methods for the causative microalgae. The traditional microscopic examination has many disadvantages, such as low efficiency, inaccuracy, and requires specialized skill in identification and especially is incompetent for parallel analysis of several morphologically similar microalgae to species level at one time. This study aimed at exploring the feasibility of using membrane-based DNA array for parallel detection of several microalgae by selecting five microaglae, including Heterosigma akashiwo, Chaetoceros debilis, Skeletonema costatum, Prorocentrum donghaiense, and Nitzschia closterium as test species. Five species-specific (taxonomic) probes were designed from variable regions of the large subunit ribosomal DNA (LSU rDNA) by visualizing the alignment of LSU rDNA of related species. The specificity of the probes was confirmed by dot blot hybridization. The membrane-based DNA array was prepared by spotting the tailed taxonomic probes onto positively charged nylon membrane. Digoxigenin (Dig) labeling of target molecules was performed by multiple PCR/RT-PCR using RNA/DNA mixture of five microalgae as template. The Dig-labeled amplification products were hybridized with the membrane-based DNA array to produce visible hybridization signal indicating the presence of target algae. Detection sensitivity comparison showed that RT-PCR labeling (RPL) coupled with hybridization was tenfold more sensitive than DNA-PCR-labeling-coupled with hybridization. Finally, the effectiveness of RPL coupled with membrane-based DNA array was validated by testing with simulated and natural water samples, respectively. All of these results indicated that RPL coupled with membrane-based DNA array is specific, simple, and sensitive for parallel detection of microalgae which shows promise for monitoring natural samples in the future.  相似文献   

19.
DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) and its principle metabolites, DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) and DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) are widespread environmental contaminants but little information is available concerning their effects on non-target microflora (especially microalgae and cyanobacteria) and their activities in long-term contaminated soils. For this reason a long-term DDT-contaminated soil was screened for DDT residues and toxicity to microorganisms (bacteria, fungi, algae), microbial biomass and dehydrogenase activity. Also, five pure cultures isolated from various sites (two unicellular green algae and three dinitrogen-fixing cyanobacteria) were tested for their ability to metabolise DDT. Viable counts of bacteria and algae declined with increasing DDT contamination while fungal counts, microbial biomass and dehydrogenase activity increased in medium-level contaminated soil (27 mg DDT residues kg(-1) soil). All the tested parameters were greatly inhibited in high-level contaminated soil (34 mg DDT residues kg(-1) soil). Species composition of algae and cyanobacteria was altered in contaminated soils and sensitive species were eliminated in the medium and high contaminated soils suggesting that these organisms could be useful as bioindicators of pollution. Microbial biomass and dehydrogenase activity may not serve as good bioindicators of pollution since these parameters were potentially influenced by the increase in fungal (probably DDT resistant) counts. All the tested algal species metabolised DDT to DDE and DDD; however, transformation to DDD was more significant in the case of dinitrogen-fixing cyanobacteria.  相似文献   

20.
Conifer needles are used for the monitoring of atmospheric persistent organic pollutants. The objective of the present study was to develop a method for the detection of airborne chlorinated paraffins (CPs) using spruce needles as a passive sampler. The method is based on liquid extraction of the cuticular wax layer followed by chromatographic fractionation and detection of CPs using two different GCMS techniques. Total CP concentrations (sum of short (SCCP), medium (MCCP) and long chain CPs (LCCP)) were determined by EI-MS/MS. SCCP and MCCP levels as well as congener group patterns (n-alkane chain length, chlorine content) could be evaluated using ECNI-LRMS. For the first time, data on environmental airborne CPs on spruce needles taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) are presented providing evidence that spruce needles are a suitable passive sampling system for the monitoring of atmospheric CPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号