首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposomic studies of the rapidly changing environment of the Three Gorges Reservoir (TGR) after its impounding is elaborated as a novel field of human and environmental research. Molecular exposomics is focused on the measure of all exposures to molecules and especially persistent organic pollutants-like compounds are of emerging interest due to their lifetime existence in the environment and humans. Theoretical considerations in general and particular for the TGR are deduced and presented using quantitative approaches for this research field. Since exposomics is strongly time-dependent, a theory is presented to link extension of exposure, time, and related effects. Similarity to the first law of thermodynamics is outlined. On top of this, the integrated use of biomarkers is presented employing chemical analysis for biomarkers of exposure and effects, biomarkers in vivo, in vitro approaches and the link between chemical mixtures, and the onset of disease and lethality. Besides real organisms, also virtual organisms are favored to act as well-defined sub-compartments such as fat of biota and with respect to time of exposure. Exposomics is the perspective of risk evaluation and chronic exposures in the running century. It needs novel theories, approaches, and integrated action between medical and environmental disciplines. The existing knowledge about molecular stressors has to be assembled and put into a context especially with respect not only to time resp. lifetime exposure of humans but also eco-toxicological findings by using highly conserved phylogenetic mechanisms to enable links between human and risks of environmental biota. The TGR is a good example not only to employ biomonitoring of real but also virtual organisms due to the lack of established ecotopes in this changing environment so far. Progress in understanding long-term risks requires a proper theory as well as novel tools such as virtual organisms. On top, multidisciplinary approaches and the utilization of existing knowledge about the exposure of the environment and humans have to be merged and directed into mutual concepts. Effect-oriented and chemical analysis must be designed time-oriented to determine lifetime exposures of mankind and nature. Perspectively, a first attempt about exposomic theory and concepts is proposed and has to be developed experimentally further enclosing virtual besides of real organisms and compartments. Environmental and human exposomics have to be considered as a unified global issue in order to effectively utilize their mutual existing knowledge most effectively. The TGR is a challenging model system aiming this objective.  相似文献   

2.
Several groups of bacteria such as Dehalococcoides spp., Dehalobacter spp., Desulfomonile spp., Desulfuromonas spp., or Desulfitobacterium spp. are able to dehalogenate chlorinated pollutants such as chloroethenes, chlorobenzenes, or polychlorinated biphenyls under anaerobic conditions. In order to assess the dechlorination potential in Yangtze sediment samples, the presence and activity of the reductively dechlorinating bacteria were studied in anaerobic batch tests. Eighteen sediment samples were taken in the Three Gorges Reservoir catchment area of the Yangtze River, including the tributaries Jialing River, Daning River, and Xiangxi River. Polymerase chain reaction analysis indicated the presence of dechlorinating bacteria in most samples, with varying dechlorinating microbial community compositions at different sampling locations. Subsequently, anaerobic reductive dechlorination of tetrachloroethene (PCE) was tested after the addition of electron donors. Most cultures dechlorinated PCE completely to ethene via cis-dichloroethene (cis-DCE) or trans-dichloroethene. Dehalogenating activity corresponded to increasing numbers of Dehalobacter spp., Desulfomonile spp., Desulfitobacterium spp., or Dehalococcoides spp. If no bacteria of the genus Dehalococcoides spp. were present in the sediment, reductive dechlorination stopped at cis-DCE. Our results demonstrate the presence of viable dechlorinating bacteria in Yangtze samples, indicating their relevance for pollutant turnover.  相似文献   

3.
三峡库区城市污水处理厂工艺特征分析   总被引:1,自引:0,他引:1  
为了分析三峡库区(重庆)城市污水处理厂的工艺特性,对库区现有45座城市污水处理厂进行了调研。发现库区以5万m3/d以下规模的污水处理厂为主,占总数的89%。A/A/O系列工艺、氧化沟系列工艺和SBR及其变型工艺为主流主体工艺,其中占总数64%的污水处理厂选用了氧化沟系列工艺。水质参数的设置与工艺密切相关。污水中无机物含量较高,59%的污水处理厂的MLSS在4~6 g/L之间,71%的污水处理厂的MLVSS/MLSS在0.7以下。三峡库区城市污水处理厂进水水质波动大,碳源较充足,可生化性较好。另外,总结了污水处理厂运行中易出现的问题及建议措施。  相似文献   

4.
For flood control purpose, the water level of the Three Gorges Reservoir (TGR) varies significantly. The annual reservoir surface elevation amplitude is about 30 m behind the dam. Filling of the reservoir has created about 349 km2 of newly flooded riparian zone. The average flooding period lasts for more than 6 months, from mid-October to late April. The dam and its associated reservoir provide flood control, power generation, and navigation, but there are also many environmental challenges. The littoral zone is the important part of the TGR, once its eco-health and stability are damaged,which will directly endanger the ecological safety of the whole reservoir area and even the Yangtze River Basin. So, understanding the great ecological opportunities which are hidden in littoral zone of TGR (LZTGR) and putting forward approaches to solve the environmental problems are very important. LZTGR involves a wide field of problems, such as the landslides, potential water pollution, soil erosion, biodiversity loss, land cover changes, and other issues. The Three Gorges dam (TGD) is a major trigger of environmental change in the Yangtze River. The landslides, water quality, soil erosion, loss of biodiversity, dam operation, and challenge for land use are closely interrelated across spatial and temporal scales. Therefore, the ecological and environmental impacts caused by TGD are necessarily complex and uncertain. LZTGR is not only a great environmental challenge but also an ecological opportunity for us. In fact, LZTGR is an important structural unit of TGR ecosystem and has special ecosystem services function. Vegetation growing in LZTGR is therefore a valuable resource due to accumulation of carbon and nutrients. Everyone thinks that the ecological approach to the problem is needed. If properly designed, dike–pond systems, littoral woods systems, and re-created waterfowl habitats will have the capacity to capture nutrients from uplands and obstruct soil erosion. Ecological engineering approaches can therefore reduce environmental impacts of LZTGR and optimize ecological services. In view of the current situation and existing ecological problems of LZTGR, according to function demands such as environmental purification, biodiversity conservation, and vegetation carbon sink enhancement, we should explore the eco-friendly utilization mode of resources in LZTGR. Ecological engineering approaches might minimize the impacts or optimize the ecological services. Natural regeneration and ecological restoration in LZTGR are valuable for soil erosion decrease, pollutant purification, biodiversity conservation, carbon sink increase, and ecosystem health maintenance in TGR.  相似文献   

5.
为了探究三峡水库沉积土粪便污染情况,以万州段为例,在蓄水期采集了9个采样点的沉积土,分析了理化性质和微生物指标。结果发现,三峡水库万州段沉积土的pH为6.24~7.01,含水率为9.00%~25.70%,有机质质量分数为1.90%~3.70%,细菌总数为1.30×10~6~9.37×10~8 cfu/g,真菌总数为1.12×10~3~1.44×10~5 cfu/g,放线菌总数为8.33×10~4~8.85×10~8 cfu/g,总大肠菌群数为120~3 500MPN/g,耐热大肠菌群数为20~790MPN/g,大肠埃希氏菌数为20~210MPN/g。结果表明,三峡水库万州段沉积土受到了不同程度的粪便污染。总体而言,属于干流回水区或支流且位于江北、城市排污口下游的沉积土粪便污染较属于干流且位于江南、周围无排污口的沉积土严重。沉积土的理化性质与微生物指标基本没有相关性。但微生物指标之间基本可以相互印证,指示沉积土的粪便污染情况。  相似文献   

6.
The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was found that total nitrogen (TN) and total phosphorous (TP) in upland were more sensitive to NPS pollutants loading than in paddy fields. The results of this study have implications for management of the TGR to reduce the loading of NPS pollutants into downstream water bodies.  相似文献   

7.
This study deals with the evaluation of water quality of the Three Gorges Reservoir (TGR) in order to assess its suitability as a raw water source for drinking water production. Therefore, water samples from (1) surface water, (2) tap water, and (3) wastewater treatment plant effluents were taken randomly by 2011–2012 in the area of the TGR and were analyzed for seven different organic contaminant groups (207 substances in total), applying nine different analytical methods. In the three sampled water sources, typical contaminant patterns were found, i.e., pesticides and polycyclic aromatic hydrocarbons (PAH) in surface water with concentrations of 0.020–3.5 μg/L and 0.004–0.12 μg/L, disinfection by-products in tap water with concentrations of 0.050–79 μg/L, and pharmaceuticals in wastewater treatment plant effluents with concentrations of 0.020–0.76 μg/L, respectively. The most frequently detected organic compounds in surface water (45 positives out of 57 samples) were the pyridine pesticides clopyralid and picloram. The concentrations might indicate that they are used on a regular basis and in conjunction in the area of the TGR. Three- and four-ring PAH were ubiquitously distributed, while the poorly soluble five- and six-ring members, perfluorinated compounds, polychlorinated biphenyls, and polybrominated diphenyl ethers, were below the detection limit. In general, the detected concentrations in TGR are in the same range or even lower compared to surface waters in western industrialized countries, although contaminant loads can still be high due to a high discharge. With the exception of the two pesticides, clopyralid and picloram, concentrations of the investigated organic pollutants in TGR meet the limits of the Chinese Standards for Drinking Water Quality GB 5749 (Ministry of Health of China and Standardization Administration of China 2006) and the European Union (EU) Council Directive 98/83/EC on the quality of water intended for human consumption (The Council of the European Union 1998), or rather, the EU Directive on environmental quality standards in the field of water policy (The European Parliament and The Council of the European Union 2008). Therefore, the suggested use of surface water from TGR for drinking water purposes is a valid option. Current treatment methods, however, do not seem to be efficient since organic pollutants were detected in significant concentrations in purified tap water.  相似文献   

8.
三峡水库试验性蓄水175m成功后,水库水生态环境的管护成为水库管理的重点工作之一。针对目前三峡水库渔业的现状、取得的进展、存在的问题展开调研。在实地考察调研的基础上,提出了巩固取消三峡水库网箱养鱼的成果,防止反弹;开展三峡水库增殖渔业研究;建立三峡水库渔业开发总公司,实行公司化运作,实现渔业科学、有序、可持续的良性发展;加强水库增殖渔业的行政管理等建议。为政府在完善保护三峡水库水质和发展增殖渔业决策时提供参考。  相似文献   

9.
Bioavailable concentrations of polycyclic aromatic hydrocarbons (PAHs) were investigated in water of Three Gorges Reservoir (TGR) using semipermeable membrane devices during the period of completely impounding water. ∑PAH concentrations in water of TGR in the period of completely impounding water were 15–381 ng?L?1. ∑PAH concentrations increased from town or counties to big industrialized cities in TGR, indicating urbanization effects on PAH pollution in the water. Tributaries in TGR have a certain contribution of PAH pollution to the mainstream of Yangtze River and their pollution could not be neglected. An obvious decrease of PAH concentration was observed after 175-m water impounding in 2011 in TGR. Several factors may account for this decrease, including execution of comprehensive treatment and management measures in TGR, less rainfall in 2011, and sedimentation effect caused by the dam. Passive sampling method has been successfully applied in the investigation of trace PAH in water of TGR and proved to be a useful and efficient tool for the management and sustainable development of the big reservoir. The results of the study provide valuable information about PAH pollution in the whole reservoir including some tributaries, and the pollution status is dynamically related with human activities. Therefore, PAH could be used as a marker compound or indicator in the network monitoring system to surveil and trace the pollution status in TGR.  相似文献   

10.
自2003年6月三峡水库蓄水以来,库区支流富营养化和水华问题备受关注。对库区12条重点支流2010—2020年的水质、水华监测数据进行了统计分析,结果表明:12条重点支流均发生过典型水华,近几年水华发生次数减少;水华主要发生在3—9月,以蓝藻和硅藻水华为主。暴发水华的根本原因是水体营养盐充足。支流监测数据表明,水体均处于中营养状态及以上。适宜的温度、光照和缓慢的水动力条件则是暴发水华的重要原因。目前,开展营养盐削减是控制三峡库区重点支流库湾水华的根本途径;通过物理方法、化学方法和生物操控方法消除水华的应用尚且较少;而通过水库生态调度抑制水华为可行方法。  相似文献   

11.
农村生活垃圾的集中化、科学化处理对改善农村居民生活环境和农业生产环境具有重要意义。而农户对农村生活垃圾处理的支付意愿对农村生活环境的改善具有关键性作用。采用条件价值评估法(CVM)分析了三峡库区农户对处理生活垃圾的支付意愿及其影响因素。结果表明:(1)农户对农村生活垃圾处理的平均支付意愿为48元/a;(2)户主年龄、文化程度以及对环境是否关心对当地农户处理生活垃圾的支付意愿有极显著影响。户主年龄和文化程度对生活垃圾处理的支付意愿的影响为正,说明农户年龄越大、文化程度越高,对生活垃圾处理的支付意愿就越强烈。农户对环境的关心程度为正,表示农户越关心环境,对生活垃圾处理的支付意愿就越强烈。最后,提出相关建议:制定政策时要充分考虑农户的个体特征和自身利益;加强教育,提高农户的文化水平;加强环境保护宣传,提高农户的环境认知和环保意识。  相似文献   

12.
三峡库区支流回水区水体分层与藻类生长   总被引:4,自引:0,他引:4  
三峡水库自2003年蓄水以来,库区支流形成了长短不一的回水河段,缓慢的水流和蓄积的营养盐导致回水河段由库区蓄水之初在短时间内出现水华,逐步发展到一年内水华可维持数月。为了研究回水区水环境与水华发生的关系,从2013年4月—12月,对库区北岸最大支流澎溪河的长年回水区——高阳平湖进行了定点监测。监测结果显示,季节性变化及三峡库区特殊的调度方式,导致高阳平湖水体在春、夏和秋季有明显分层。春季水华期间藻类群落结构单一,只出现4门9属,以蓝藻门的微囊藻(Microcystis)、绿藻门的实球藻(Pandorina)和空球藻(Eudorina)为主,秋季藻类结构组成增至7门52属,优势属逐渐被硅藻门的小环藻(Cyclotella)和针杆藻(Synedra)取代,水体各层藻类细胞密度差异消失。研究结果说明高阳平湖水体分层状况影响藻类生长和分布。  相似文献   

13.
三峡水库泄水期香溪河库湾营养盐动态及干流逆向影响   总被引:10,自引:0,他引:10  
为了研究水库干流对支流库湾营养盐动态的影响,于2009年春季三峡水库汛前泄水期,通过监测分析了库湾水流特点及叶绿素a、总氮、总磷和溶解性硅酸盐的时空动态。研究发现:三峡水库汛前泄水期,库湾水体表现为分层异向流动,干流水体以异重流形式倒灌入库湾;特定的水流特性为泄水期库湾营养物质运移提供了水动力基础,水库干流对库湾营养盐的补给及水华暴发范围有明显逆向作用;受干流影响,氮和硅自河口至回水末端呈递减趋势,磷主要受上游来水影响,空间分布趋势与氮、硅相反;叶绿素a浓度峰值向上游移动,水华范围向上游收缩,河口处叶绿素a浓度的时间均值明显低于回水末端,表明三峡水库泄水期香溪河库湾下游水体水华受到干流逆向影响的抑制。  相似文献   

14.
The Three Gorges Dam in China is the world’s largest dam. Upon its completion in 2003, the Three Gorges Reservoir (TGR) became the largest reservoir in China and plays an important role in economic development and national drinking water safety. However, as a sink and source of heavy metals, there is a lack of continuous and comparative data on heavy metal pollution in sediments. This study reviewed all available literatures published on heavy metals in TGR sediments and further provided a comprehensive assessment of the pollution tendency of these heavy metals. The results showed that heavy metal concentrations in TGR sediments varied spatially and temporally. Temporal variations indicated that Hg in tributaries, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn in the mainstream, exhibited a higher probability to exceed background values after the impoundment of TGR. Pollution assessments by contamination factor, geoaccumulation index, and potential ecological risk were similar. High Cd and Hg concentrations in both the mainstream and tributaries are a cause for much concern. However, sediment quality guidelines produced different results, as most previous studies adopted different sampling and measurement strategies. The data inconsistencies and lack of continuity regarding the reservoir confirm the need for a continuous monitoring network and the development of quality criteria relevant to the sediments of the TGR in the future.  相似文献   

15.
16.
Environmental Science and Pollution Research - The Three Gorges Reservoir area (TGRA) has complex geological conditions and a fragile ecological environment. The construction of the Three Gorges...  相似文献   

17.
Restoration of vegetation is the most viable management approach for restoring ecological functions in the drawdown zone (hydro-fluctuation belt) of the Three Gorges Reservoir. The selection of plants for this purpose is therefore critically important. Most indigenous plants are not adapted, however, to the counter-seasonal fluctuation of water levels and rapid changes of up to 30 m in water depth that characterize the management of the reservoir. As a result, the reservoir drawdown zone tends to be vegetation deficient. Mulberry (Morus alba L.) has attracted attention as a suitable woody plant for restoring woody vegetation because of its strong adaptation to environmental stresses and the finding that it survives up to 7 m of flooding in parts of the drawdown zone. Comprehensive evaluation of research is therefore required in order to provide guidance for the rational use of mulberry in vegetation restoration strategies for the drawdown zone. Knowledge of the physiology of mulberry adaptation to stress is reviewed here, along with a detailed review of the ecology and agricultural benefits and limitations of mulberry in the context of the Three Gorges Reservoir. It is proposed that a cultivation model for mulberry plants based on ecological principles should be adopted for use within the drawdown zone and that a wider range of biophysical and socio-economic research to develop this model further should be conducted in the future.  相似文献   

18.
金沙江下游从上往下依次建设有乌东德、白鹤滩、溪洛渡和向家坝4个呈串联形式的梯级水电站,这4座大型水利工程的建设运行对下游水文情势产生了重要影响,并随之影响磷的迁移过程。基于4座梯级水电站的建设运行特点,将研究时间划分为2座电站运行阶段 (2016—2019年) 和4座电站运行阶段 (2020—2022年) 。通过分析2个阶段金沙江下游攀枝花至三峡出库南津关干流段监测站位总磷、流量和通量的变化情况,阐明金沙江下游梯级水电站运行对三峡库区总磷通量的影响程度。除嘉陵江汇入断面外,其余断面在4座电站运行阶段总磷浓度均有所降低。4座水电站的运行使得梯级水电站的调蓄作用进一步加强,但三峡入库流量波动在4座电站运行阶段并未变小,支流汇入对三峡入库流量的影响不容忽视。除沱江和嘉陵江外,其余断面总磷年均通量在4座电站运行阶段均出现一定程度的降低,沱江在2个阶段的总磷年均通量变化不大,嘉陵江在4座电站运行阶段的总磷年均通量较两座电站运行阶段增加了52%。向家坝出库对三峡入库总磷通量的贡献率由2座电站运行阶段的31%降低到4座电站运行阶段的26%,需持续关注金沙江梯级水电站的源汇作用和其对三峡入库总磷的影响。该研究结果可为持续性观测梯级水电站与流域磷迁移的规律提供参考。  相似文献   

19.
乌江水体中总磷与三峡水库相关水域存在差异。通过对相关水体中磷质量浓度变化特征的分析,结果表明:2008年前乌江TP显著低于三峡水库相关水域,其汇入对后者主要表现为“稀释”作用,可使清溪场断面TP年均值最大降低约0.02 mg·L−1;2009年后乌江TP急剧升高,其汇入后清溪场断面2009—2013年TP年均值最大升高约0.057 mg·L−1;2014年后乌江汇入基本不会使清溪场断面TP年均值明显改变;1998—2006年乌江TDP与三峡水库相关水域相近,乌江汇入对清溪场断面TDP年均值基本无影响;之后乌江TDP快速上升,2007—2013年乌江汇入最大可使清溪场断面TDP年均值升高约0.061 mg·L−1;2014年后乌江TDP大幅回落,其对水库影响降低,最大可使清溪场断面TDP年均值升高约0.008 mg·L−1;乌江汇入对三峡水库局部水体磷质量浓度的影响在不同时段其程度、趋势均不一致;乌江干流水电建设导致的水文条件变化和乌江上游区域磷矿开发过程中含磷废水排放使得乌江水体中磷质量浓度发生改变,进而间接、持续对三峡水库局部水体中磷质量浓度产生影响。该研究结果可为三峡水库的水生态环境监管提供参考。  相似文献   

20.
三峡水库是世界上最大的人工水库,其潜在甲烷释放近年来备受关注。目前将甲烷排放量与甲烷功能菌的生长与作用机制相结合开展研究的报道较少。为探究三峡库区夏季万州段甲烷功能菌群落对甲烷排放的影响,分别于2019年7月和9月采集了三峡库区万州段底泥,利用16S rRNA基因高通量测序技术,对该区域的万州干流和高阳、黄石支流在属水平上的甲烷功能菌群落组成结构以及甲烷功能菌群落与甲烷排放通量间的关系进行了研究。结果表明:监测期间内高阳、黄石、万州平均甲烷通量为(0.874±0.011)、(0.884±0.234)、(0.507±0.262) μmol·(m2·h)−1,支流大于干流,总体表现为甲烷排放“源”。在产甲烷菌群落中,部分未分类产甲烷古菌unclassified_p_Euryarchaeota、environmental_samples_f_ Methanosarcinaceae以及未命名古菌对产甲烷影响较大,该类细菌可促进甲烷产生。在甲烷氧化菌群落中,Methylobacter、Methylosarcina以及未分类氧化菌对甲烷氧化有较大影响,当该类细菌占比增加时会加速甲烷氧化,从而减少水-气界面中的甲烷排放。除甲烷功能菌群以外,推测温度与河流回水顶托作用也是导致干、支流甲烷排放出现差异的重要因素。以上研究结果可对揭示水库甲烷排放与甲烷功能菌生长和作用机制的关系提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号