首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
ABSTRACT: Three investigations are underway, as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in‐stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.  相似文献   

2.
What size sample is sufficient for spatially sampling ambient groundwater quality? Water quality data are only as spatially accurate as the geographic sampling strategies used to collect them. This research used sequential sampling and regression analysis to evaluate groundwater quality spatial sampling policy changes proposed by California's Department of Water Resources. Iterative or sequential sampling of a hypothetical groundwater basin's water quality produced data sets from sample sizes ranging from 2.8% to 95% coverage of available point sample sites. Contour maps based on these sample data sets were compared to an original (control), mapped hypothetical data set, to determine at which point map information content and pattern portrayal are not improved by increasing sample sizes. Comparing series of contour maps of ground water quality concentration is a common means of evaluating the geographic extent of groundwater quality change. Comparisons included visual inspection of contout maps and statistical tests on digital versions of these map files, including correlation and regression products. This research demonstrated that, down to about 15% sample site coverage, there is no difference between contour maps produced from the different sampling strategies and the contout map of the original data set.  相似文献   

3.
4.
An Open Water Data Initiative has been established by the federal government to enhance water information sharing across the United States (U.S.) using standardized web services for geospatial and temporal data. In a parallel effort, the National Weather Service has established a new National Water Center on the Tuscaloosa campus of the University of Alabama, at which a new National Water Model starts operations in June 2016, to continually simulate and forecast streamflow discharge throughout the continental U.S. These two developments support the interoperability of streamflow and hydrologic information in time and space from modeled and observed sources through the use of open standards to share water information.  相似文献   

5.
Restoration of the Florida Everglades is important for the health of the natural system, including both the "River of Grass" and its downstream estuaries. Water quality improvement is one indicator of successful restoration in this complex ecosystem. Using the period of record of 1977 through 2005, we evaluated data from seven inflow sites to the Everglades National Park (ENP) for temporal trends of various forms of phosphorus (P) and nitrogen (N) and analyzed them using principal component analysis and factor analysis without flow adjustments. Locally estimated scatter plot smoothing (LOESS) trend lines identified two inflection points (three time periods) of changing trend in total P (TP) concentration at the seven sites. Results indicated that overall water quality in ENP inflow improved from 1977 to 2005, with significant downward trends in TP concentration. The overall trend ofTP is probably mediated by hydrology, which is evident by a negative relationship between flow and annual average TP concentration at the majority of stations within the available data, although additional changes in vegetation due to hydroperiod may have some effects. Total N (TN), total Kjeldahl N, and total organic N concentrations also generally decreased at inflow sites. Water quality standards for TP, TN, and NH4+ -N were exceeded at selected sites during the study period. Principle component analysis and factor analysis detected a grouping of sampling sites related to the water delivery system that could be used as indicators to better manage monitoring resources. Study results suggest that water quality data analyses could provide additional insight into the success of a restoration management plan and on how monitoring may be modified for more efficient use ofresources.  相似文献   

6.
ABSTRACT: The Environmental Display Manager, EDM, is a development system on an IBM 3090 mainframe at the U.S. EPA National Computer Center in Research Triangle Park, North Carolina. EDM provides mapping, display, analysis support, and information management capabilities to workstations located across the United States, and connected to EPA through federal, state, academic, and private communications networks. Through interactive software, EDM can quickly support analyses, create maps and graphics, and generate reports that integrate millions of pieces of environmental data. The concept of EDM is to provide easy access to environmental information, to provide automated environmental analyses and reports, and then to provide data, graphics, images, text, and documents that can be used by numerous output devices, software packages, and computers. The mapping cumponent works with an electronic version of the 54,000 7.5 minute quad sheets of the U.S. Geological Survey. The software also works with a hydrographic data base of the surface waters of the United States. With the maps, a user can look at the rivers in any state, can zoom in on a small pond, and can overlay and identify particular features such as industrial waste dischargers and factories. The hydrography allows routing for modeling programs, identification of upstream and downstream components, and linkage of environmental features associated with surface waters. Alternatively, users can query data based on latitude/longitude, city name, EPA permit number, state agency and station code, river name or number, and river cataloging unit. The maps can be overlaid with roads and environmental sites such as: municipal and industrial dischargers, Superfund sites, public drinking water supplies, water quality monitoring stations, stream gages, and city locations. Retrievals from related systems can be performed for selected sites creating graphics showing water quality trends, discharge monitoring reports, and permit discharge limits.  相似文献   

7.
ABSTRACT: Water quality monitoring, as a function of society's efforts to manage the environment, is the contact mechanism that management and the public has with the actual water quality in the environment. Water quality monitoring has been studied extensively for many years to ensure that it produces information about water quality conditions. Current efforts to reduce government spending will have negative impacts on those government functions deemed to be non-responsive to the needs of the public. How well does water quality monitoring inform taxpayers about the status and trends in water quality conditions in the United States? This paper reviews a number of past efforts to “improve” water quality monitoring, discusses barriers to such improvement, and suggests ways that monitoring can be made more accountable for the information it should be producing for public understanding of water quality conditions. In particular, the need for standardization in data analysis and reporting of information to the public, is highlighted.  相似文献   

8.
Modeling is a common practice to evaluate factors affecting water quality in environmental systems impaired by point and nonpoint losses of N and P. Nevertheless, in situations with inadequate information, such as ungauged basins, a balance between model complexity and data availability is necessary. In this paper, we applied a simplified analytical model to an artificially drained floodplain in central-western Italy to evaluate the importance of different nutrient sources and in-stream retention processes and to identify critical source areas. We first considered only a set of chemical concentrations in water measured from February through May 2008 and from November 2008 through February 2009. We then broadened available data to include water discharge and hydraulic-head measurements to construct a hydrogeological model using MODFLOW-2000 and to evaluate the reliability of the simplified method. The simplified model provided acceptable estimates of discharge (ranging from 0.03-0.75 m s) and diffuse nutrient inputs from water table discharge and in-stream retention phenomena. Estimates of PO-P and total P retention (ranging from 1.0 to 0.6 μg m s and from 1.18 to 0.95 μg m s for PO-P and total P, respectively) were consistent with the range of variability in literature data. In contrast, the higher temporal variability of nitrate concentrations decreased model accuracy, suggesting the need for more intensive monitoring. The model also separated the dynamics of different reaches of the drainage network and identified zones considered critical source areas and buffer zones where pollutant transport is reduced.  相似文献   

9.
ABSTRACT: Water is potentially one of the most affected resources as climate changes. Though knowledge and understanding has steadily evolved about the nature and extent of many of the physical effects of possible climate change on water resources, much less is known about the economic responses and impacts that may emerge. Methods and results are presented that examine and quantify many of the important economic consequences of possible climate change on U.S. water resources. At the core of the assessment is the simulation of multiple climate change scenarios in economic models of four watersheds. These Water Allocation and Impact Models (Water‐AIM) simulate the effects of modeled runoff changes under various climate change scenarios on the spatial and temporal dimensions of water use, supply, and storage and on the magnitude and distribution of economic consequences. One of the key aspects and contributions of this approach is the capability of capturing economic response and adaptation behavior of water users to changes in water scarcity. By reflecting changes in the relative scarcity (and value) of water, users respond by changing their patterns of water use, intertemporal storage in reservoirs, and changes in the pricing of water. The estimates of economic welfare change that emerge from the Water‐AIM models are considered lower‐bound estimates owing to the conservative nature of the model formulation and key assumptions. The results from the Water‐AIM models form the basis for extrapolating impacts to the national level. Differences in the impacts across the regional models are carried through to the national assessment by matching the modeled basins with basins with similar geographical, climatic, and water use characteristics that have not been modeled and by using hydro‐logic data across all U.S. water resources regions. The results from the national analysis show that impacts are borne to a great extent by nonconsumptive users that depend on river flows, which rise and fall with precipitation, and by agricultural users, primarily in the western United States, that use a large share of available water in relatively low‐valued uses. Water used for municipal and industrial purposes is largely spared from reduced availability because of its relatively high marginal value. In some cases water quality concerns rise, and additional investments may be required to continue to meet established guidelines.  相似文献   

10.
ABSTRACT: Urbanization history and flood frequencies were determined in six low-order streams in the Puget Lowlands, Washington, for the period between the 1940150s and the 1980190s. Using discharge records from USGS gauging stations, each basin was separated into periods prior to and after urban expansion. Four of the study basins exhibited significant changes in urbanized area, whereas two of the study basins exhibited only limited change in urbanized area and effectively serve as control basins. Each of the basins that experienced a significant increase in urbanized area exhibited increased flood frequency; pre-urbanization 10-year recurrence interval discharges correspond to 1 to 4-year recurrence interval events in post-urbanization records. In contrast, no discernible shift in flood frequency was observed in either of the control basins. Spawner survey data available for three of the study basins reveal systematic declines in salmon abundance in two urbanizing basins and no evidence for decreases in a control basin. These data imply a link between ongoing salmon population declines and either increased flood frequency or associated changes in habitat structure.  相似文献   

11.
/ A watershed-based approach for screening-level assessment of nonpoint source pollution from inactive and abandoned metal mines was developed and illustrated. The methodology was designed to use limited stream discharge and chemical data from synoptic surveys to derive key information required for targeting impaired waterbodies and critical source areas for detailed investigation and remediation. The approach was formulated based on the required attributes of an assessment methodology, information goals for targeting, attributes of data that are typical of basins with inactive mines, and data analysis methods that were useful for the case study. The methodology is presented as steps in a framework including evaluation of existing data/information and identification of data gaps; definition of assessment information goals for targeting and monitoring design; data collection, management, and analysis; and information reporting and use for targeting. Information generated includes the type and extent of and critical conditions for water-quality impairment, concentrations in and loadings to streams, differences between concentrations in and loadings to streams, and risks of exceeding target concentrations and loadings. Data from the Cement Creek Basin, located in the San Juan Mountains of southwestern Colorado, USA, were used to help develop and illustrate application of the methodology. The required information was derived for Cement Creek and used for preliminary targeting of locations for detailed investigation and remediation. Application of the approach to Cement Creek was successful in terms of cost-effective generation of information and use for targeting.KEY WORDS: Water quality assessment; Nonpoint source pollution; Inactive mines; Watershed  相似文献   

12.
ABSTRACT: The Fairbanks Water Treatment Plant in Fairbanks, Alaska, processes approximately 3 MGD of drinking water using lime softening. Approximately 0.3 MGD of lime-sludge from the treatment process is combined with effluent from a nearby power plant and discharged to the Chena River. There is little information available on the impact of water-treatment sludge discharges, and virtually no information on the impacts of such discharges in polar environments. Concern surrounding the discharge of water treatment sludges have centered on alum-sludge due to the potential toxic effects of aluminum. Because of the relatively benign composition of lime-sludge, very little research has been published. However, there is the possibility that discharge of solids will result in sedimentation, accumulation of solids, and subsequent impacts on benthic organisms. This paper reports on the results of a study to determine if lime-sludge discharge from the water treatment plant is adversely impacting the river environment. The results provide basic information on the important variables of concern in lime-discharges to rivers. Samples from the discharge of the water treatment plant and combined water treatment plant/power plant effluent were collected weekly over a one-year period, and in-stream benthic and water column samples were collected biweekly during the fall and spring. Sediment and water quality data indicate that while significant accumulation of sludge solids is found downstream of the water treatment plant outfall, they are flushed out of the system by spring flows, which are significantly increased by snow melt. This process is most likely repeated on a yearly cycle. Hence, the data suggest that the FMUS water treatment plant's discharge of lime-sludge is probably not adversely impacting the river. More generally, this may indicate that the natural flow variations and sediment-laden characteristics of Arctic, glacier-fed rivers may assimilate large quantities of nonputrescible solids without significant changes in the natural river environment. Further research in this area is required to verify this conclusion.  相似文献   

13.
Water quality criteria were developed for delivery waters to Everglades National Park. The park receives a minimum of 12.34 m3/sec (315,000 acre-ft/yr) of water from controlled sources external to its boundary. These waters often originate from areas that are or potentially are impacted from urban and agricultural developments. When, in 1970, the U.S. Congress guaranteed minimum water deliveries to Everglades National Park, it also required that these waters be of good quality.The Everglades National Park water quality data base was analyzed from 1970 to 1978 at both in-park and water delivery sites to determine the current level of delivery water quality and to select representative delivery sites. It was found that current delivery water quality was sufficiently high to be adopted as criteria against which future water quality could be compared. From the delivery sites S-12C and L-67A all data were combined from 1970–1978 for 36 parameters including macronutrients, heavy metals, and field parameters such as DO, pH, and specific conductance. Mean concentrations and upper limits were computed and tabulated for comparison during future monitoring programs. These criteria were subsequently adopted through a joint memorandum of agreement between the U.S. Army Corps of Engineers, South Florida Water Management District and the U.S. National Park Service.  相似文献   

14.
ABSTRACT: Four years of monthly freshwater discharge and constituent concentration data from three tributaries were related to a concurrent series of data for three segments of the St. Lucie Estuary in South Florida using multiple regression and time-series analysis techniques. Water quality parameters examined were dissolved inorganic and total nitrogen and phosphorus, chlorophyll a, total suspended solids, turbidity, and color. On monthly time scales, a multiple regression, which included freshwater discharge, freshwater constituent concentration, and dilution with ocean water (salinity) as independent variables, explained 50 percent or less of the variability in estuarine constituents. No single independent variable explained more variation than another. By contrast, on seasonal (wet, dry) time scales, freshwater discharge explained the bulk of variation in estuarine water quality (up to 93 percent). On monthly time scales, variability in concentrations of nutrients and other constituents may be largely controlled by processes internal to the system. At seasonal time scales, freshwater discharge appears to drive variability in most estuarine water quality parameters examined. Results indicate that management of tributary input on a seasonal basis, with the expectation of achieving seasonal concentration goals in the estuary, would have a higher probability of success than managing on a monthly basis.  相似文献   

15.
Over the summer of 2015, the National Water Center hosted the National Flood Interoperability Experiment (NFIE) Summer Institute. The NFIE organizers introduced a national‐scale distributed hydrologic modeling framework that can provide flow estimates at around 2.67 million reaches within the continental United States. The framework generates discharges by coupling a given Land Surface Model (LSM) with the Routing Application for Parallel Computation of Discharge (RAPID). These discharges are then accumulated through the National Hydrography Dataset Plus stream network. The framework can utilize a variety of LSMs to provide the runoff maps to the routing component. The results obtained from this framework suggested that there still exists room for further enhancements to its performance, especially in the area of peak timing and magnitude. The goal of our study was to investigate a single source of the errors in the framework's discharge estimates, which is the routing component. The authors substitute RAPID which is based on the simplified linear Muskingum routing method by the nonlinear routing component the Iowa Flood Center have incorporated in their full hydrologic Hillslope‐Link Model. Our results show improvement in model performance across scales due to incorporating new routing methodology.  相似文献   

16.
Tillage has been and will always be integral to crop production. Tillage can result in the degradation of soil, water, and air quality. Of all farm management practices, tillage may have the greatest impact on the environment. A wide variety of tillage equipment, practices and systems are available to farmers, providing opportunities to enhance environmental performance. These opportunities have made tillage a popular focus of environmental policies and programs such as environmental indicators for agriculture. This paper provides a very brief examination of the role of tillage in crop production, its effect on biophysical processes and, therefore, its impact on the environment. Models of biophysical processes are briefly examined to demonstrate the importance of tillage relative to other farm management practices and to demonstrate the detail of tillage data that these models can demand. The focus of this paper is an examination of the use of information on tillage in Canada's agri-environmental indicators initiative, National Agri-environmental Health Analysis and Reporting Program (NAHARP). Information on tillage is required for several of the indicators in NAHARP. The type of data used, its source, and its quality are discussed. Recommendations regarding the collection of tillage data and use of tillage information are presented.  相似文献   

17.
ABSTRACT: A method is presented for determining low discharge periods of rivers based on threshold values defined in terms of MEAN OF MINIMUM SUMMER (WINTER) DISCHARGES. The method is used to determine summer low flow periods in the Vistula River basin in Poland. Analysis is based on daily discharge data for 84 basins of the Upper Vistula River which was collected by the Polish Institute of Meteorology and Water Economy.  相似文献   

18.
ABSTRACT: The total maximum daily load (TMDL) for suspended sediment is the maximum quantity of suspended sediment that can enter a waterway without affecting the beneficial uses of the waterway. It is calculated as the sum of permissible allotments of point sources of suspended sediment, permissible allotments of nonpoint sources of suspended sediment, background (natural) loading of suspended sediment, and a margin of safety. The goal of this project was to develop methods for estimating background levels of sediment loads in tributaries of the Great Lakes. Such quantification is key to determining permissible TMDL in waters that do not meet water quality standards under the Clean Water Act of 1972. Suspended sediment loading for 46 rivers was estimated from data collected at U.S. Geological Survey (USGS) gages. Land use and physiographic attributes were estimated for these gaged basins with a geographic information system (GIS). Basin attributes and sediment yield data are the basis for examining two approaches to estimating background suspended sediment loads. One method, based upon envelope curves of sediment yield and drainage area, will be shown to have considerable merit. A second method, based upon correlation of sediment yield to various basin attributes such as drainage area and land use, will be shown to be fraught with difficulties.  相似文献   

19.
With the pressure from industries and municipalities to reduce the waste water treatment costs associated with the permit limits needed to attain the goals of the Clean Water Act, attention has turned ways of introducing flexibility into the regulations without sacrificing the water quality goals. Wisconsin is the first state to have adopted a variety of options from which dischargers may choose when meeting their water quality requirements. These options were developed for the express purpose of minimizing the costs and maximizing the flexibility of the point source water quality regulations while ensuring that permitted discharge would not violate the water quality standards. This paper presents five options that the state has made available to dischargers, as well as one the state did not adopt. The conclusion is that a mix of options can substantially increase the flexibility and reduce the costs of meeting water quality standards on effluent limited streams.  相似文献   

20.
The National Flood Interoperability Experiment is a research collaboration among academia, National Oceanic and Atmospheric Administration National Weather Service, and government and commercial partners to advance the application of the National Water Model for flood forecasting. In preparation for a Summer Institute at the National Water Center in June‐July 2015, a demonstration version of a near real‐time, high spatial resolution flood forecasting model was developed for the continental United States. The river and stream network was divided into 2.7 million reaches using the National Hydrography Dataset Plus geospatial dataset and it was demonstrated that the runoff into these stream reaches and the discharge within them could be computed in 10 min at the Texas Advanced Computing Center. This study presents a conceptual framework to connect information from high‐resolution flood forecasting with real‐time observations and flood inundation mapping and planning for local flood emergency response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号